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Outline

The Cell Broadband Engine Architecture
H. P. Hofstee. Power efficient processor architecture and the Cell processor. HPCA 2005, pages 258–262, 2005.

Project 1: 112-bit prime field ECDLP

Project 2: On the Use of the Negation Map in the Pollard Rho
Method
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Cell Availability

PS3 PS3 PCIe BladeServer
slim discontinued QS22?

Speed 3.2GHz 3.2GHz 2.8GHz 3.2GHz
#SPEs 6 6 8 16
Memory ≈256MB ≈256MB 4GB ≤32GB

Price $299.99 $100 – $300 ≈ $8k $10k – $14k
Power 250W 280W 210W 230W

Compatibility PSOne PSOne, Linux Linux Linux

? IBM PowerXCell 8i processor, offering five times the double precision
performance of the previous Cell/B.E. processor.
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Cell architecture, the SPEs

The SPEs contain

a Synergistic Processing Unit (SPU)

Access to 128 registers of 128-bit
SIMD operations
Dual pipeline (odd and even)
In-order processor

256 KB of fast local memory (Local Store)

Memory Flow Controller (MFC)

Direct Memory Access (DMA) controller
Handles synchronization operations to the other SPUs and the PPU
DMA transfers are independent of the SPU program execution
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SPU registers

• Byte (8-bit): 16-way SIMD
• Half-word (16-bit): 8-way SIMD
• Word (32-bit): 4-way SIMD
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Special SPU instructions

All distinct binary operations f : {0, 1}2 → {0, 1} are present.
Furthermore:

shuffle bytes add/sub extended
or across count leading zeros
average of two vectors count ones in bytes
select bits gather lsb
carry/borrow generate sum bytes
multiply and add multiply and subtract

only

4-way SIMD

16× 16→ 32-bit multiplication
but,

4-way SIMD

16× 16 + 32→ 32-bit multiply-and-add instruction
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Considerations

Branching

No “smart” dynamic branch prediction
Instead “prepare-to-branch” instructions to redirect instruction prefetch
to branch targets

Memory

The executable and all data should fit in the LS
Or perform manual DMA requests to the main memory (max. 214 MB)

Instruction set limitations

16× 16→ 32 bit multipliers (4-SIMD)

Challenge

One odd and one even instruction can be dispatched per clock cycle.

8 / 40



LACAL setup

Physically in the cluster room:
190 PS3s

6× 4 PS3s in the PlayLaB
(attached to the cluster)

5 PS3 in our offices for
programming purposes

⇒ 219 PS3s in total.
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Outline

The Cell Broadband Engine Architecture

Project 1: 112-bit prime field ECDLP
Joppe W. Bos, Marcelo E. Kaihara, Thorsten Kleinjung, Arjen K. Lenstra, Peter L. Montgomery: Solving a
112-bit Prime Elliptic Curve Discrete Logarithm Problem on Game Consoles using Sloppy Reduction In The
International Journal of Applied Cryptography, 2011 (to appear)

Project 2: On the Use of the Negation Map in the Pollard Rho
Method

11 / 40



The Elliptic Curve Discrete Logarithm Problem (ECDLP)

The setting:

E is an elliptic curve over Fp with p odd prime.

P ∈ E (Fp) a point of (prime) order n.

Q = k · P ∈ 〈P〉.

Problem: Given E , p, n,P and Q what is k?
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ECDLP Parameters

Certicom Challenge

Solve the ECDLP for EC over Fp (p odd prime) and F2m .

109-bit prime challenge solved in November 2002 by Chris Monico
Required time: 4000-5000 PCs working 24/7 for one year.

Next challenge is an EC over an 131-bit prime field

The 131-bit challenge requires 2000 times the effort of the 109-bit
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ECDLP Parameters

ECC Standards

Standard for Efficient Cryptography (SEC),
SEC2: Recommended Elliptic Curve Domain Parameters
Prime fields bit length: { 112, 128, 160, 192, 224, 256, 384, 521 }
Wireless Transport Layer Security Specification
Prime fields bit length: { 112, 160, 224 }
Digital Signature Standard (FIPS PUB 186-3)
Prime fields bit length: { 192, 224, 256, 384, 521 }

How fast can we solve this 112-bit ECDLP?
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How fast can we solve an 112-bit ECDLP?

Pollard rho

The most efficient algorithm in the literature (for generic curves) is Pollard
rho. The underlying idea of this method is to search for two distinct pairs
(ci , di ), (cj , dj ) ∈ Z/nZ× Z/nZ such that

ci · P + di · Q = cj · P + dj · Q

(ci − cj ) · P = (dj − di ) · Q = (dj − di )k · P
k ≡ (ci − cj )(dj − di )

−1 mod n

J. M. Pollard. Monte Carlo methods for index computation (mod p).Mathematics of Computation, 32:918-924, 1978.
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Xλ+1
Xλ+µ+1

Xλ+2

Xλ+µ+2

Xλ+3Xλ+µ+3

Xλ+µ−2
Xλ+µ−1

X0

X1

X2

Xλ−1

Xλ Xλ+µ
Pollard Rho

“Walk” through the set 〈P〉
Xi = ci · P + di · Q
Iteration function f : 〈P〉 → 〈P〉
This sequence eventually collides

Expected number of steps

(iterations):

√
π·|〈P〉|
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Integer Representation

x [0] =

128-bit wide register︷ ︸︸ ︷︸ ︷︷ ︸
the 32 (or 16) least significant bits of x2 are located in

this 32-bit word (or in its 16 least significant bits)
...

...
x [j ] = 16-bit︸ ︷︷ ︸

high

order

16-bit︸ ︷︷ ︸
low

order...
...

x [n − 1] = ︸ ︷︷ ︸
↑

(x1,

︸ ︷︷ ︸
↑
x2,

︸ ︷︷ ︸
↑
x3,

︸ ︷︷ ︸
↑
x4)
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Implementation Details

Optimize for high-throughput, not low-latency

Interleave two 4-way SIMD streams

An efficient 4-way SIMD modular inversion algorithm

Compute on 400 curves in parallel

simultaneous inversion (Montgomery)

Do not use the negation map optimization

Trade correctness for speed

When adding points X and Y do not check if X = Y .
Save code size and increase performance (no branching).

Faster modular reduction which might compute the wrong result.
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Special Moduli

112-bit target

The 112-bit prime p used in the target curve E (Fp) is

p = 2128−3
11·6949

Let R = 2128, use a redundant representation modulo
p̃ = R − 3 = 11 · 6949 · p

Note: x · 2128 ≡ x · 3 mod p̃

R : Z/2256Z → Z/2256Z
x 7→

(
x mod 2128

)
+ 3 ·

⌊
x

2128

⌋
x = xH · 2128 + xL ≡ xL + 3 · xH = R(x) mod p̃
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Sloppy Reduction

How often does it happen that R(R(a · b)) >= R?

Given x = x0 + x1R, 0 ≤ x < R2, then
R(x) = x0 + 3x1 = y = y0 + y1R ≤ 4R − 4 and hence: y1 ≤ 3

If y1 = 3, then y0 + y1R = y0 + 3R ≤ 4R − 4 and thus y0 ≤ R − 4.
If y1 ≤ 2, then y0 ≤ R − 1.

R(R(x)) =

{
y0 + 3y1 ≤ (R − 4) + 3 · 3
y0 + 2y1 ≤ (R − 1) + 3 · 2

}
= R + 5.

Rough heuristic approximation: 6
R+6

More sophisticated heuristic:(
ϕ(p̃)

p̃

)
·
∑

k=1,2

(
3− k − k log

(
3

k

))
≈ 0.99118

R
<

1

R
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Performance Results

Operation Average # cycles Average # cycles Operations Average # cycles

(sloppy modulus p̃ = 2128 − 3, per two interleaved per operation per iteration per iteration

modulus p = p̃
11·6949

) 4-SIMD operations

Sloppy multiplication modulo p̃ 430 54 6 322
(multiplication+reduction) (318 + 112) (40 + 14)
Modular subtraction 40 even, 24 odd: 40 total 5 6 30

Modular inversion n/a 4941 1
400

12

Unique representation mod p 192 24 1 24
Miscellaneous 544 68 1 68

Total 456

Hence, our 214-PS3 cluster:

computes 9.1 · 109 ≈ 233 iterations per second

works on > 0.5M curves in parallel

Storage

Per PS3: one distinguished point (4× 16 bytes) per two second

When storing the data naively: ≈ 300GB expected
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Comparison

XC3S1000 FPGAs [1]

FPGA-results of EC over 96- and 128-bit generic prime fields
for COPACOBANA [2]

Can host up to 120 FPGAs (US$ 10, 000)

Our implementation

Targeted at 112-bit prime curve

Use 128-bit multiplication + fast reduction modulo p̃

For US$ 10, 000 buy 33 PS3s

[1] T. Güneysu, C. Paar, and J. Pelzl. Special-purpose hardware for solving the elliptic curve discrete logarithm problem. ACM
Transactions on Reconfigurable Technology and Systems, 1(2):1-21, 2008.
[2] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Breaking ciphers with COPACOBANA a cost-optimized parallel
code breaker. In CHES 2006, volume 4249 of LNCS, pages 101-118, 2006.
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Comparison

96 bits 128 bits

COPACOBANA 4.0 · 107 2.1 · 107

+ Moore’s law 7.9 · 107 4.2 · 107

+ Negation map 1.1 · 108 5.9 · 107

PS3 4.2 · 107

33 PS3 1.4 · 109

33 PS3 / COPACOBANA (96 bits): 12.4 times faster
33 PS3 / COPACOBANA (128 bits): 23.8 times faster

Note

The 33 dual-threaded PPE were not used

The new COPACOBANA has faster FPGAs
(no performance results known yet).
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The 112-bit Solution

The point P of prime order n is given in the standard.
The x-coordinate of Q was chosen as b(π − 3)1034c.

Expected #iterations
√

π·n
2 ≈ 8.4 · 1016

January 13, 2009 – July 8, 2009 (not running continuously)

When run continuously using the latest version of our code, the same
calculation would have taken 3.5 months

P = (188281465057972534892223778713752, 3419875491033170827167861896082688)
Q = (1415926535897932384626433832795028, 3846759606494706724286139623885544)
n = 4451685225093714776491891542548933

Q = 312521636014772477161767351856699 · P
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Outline

The Cell Broadband Engine Architecture

Project 1: 112-bit prime field ECDLP

Project 2: On the Use of the Negation Map in the Pollard Rho
Method

Joppe W. Bos, Thorsten Kleinjung, Arjen K. Lenstra: On the Use of the Negation Map in the Pollard Rho
Method In Algorithmic Number Theory (ANTS) 2010, volume 6197 of LNCS, pages 67-83, 2010
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Motivation

Study the negation map in practice when solving the elliptic curve discrete
logarithm problem over prime fields.

The Suite B Cryptography by the NSA allows elliptic curves over
prime fields only.

Solve ECDLPs fast → break ECC-based schemes.

Using the (parallelized) Pollard ρ method

79-, 89-, 97- and 109-bit (2000) prime field Certicom challenges

the 112-bit prime field ECDLP

have been solved.

Textbook optimization: negation map (
√

2 speed-up)

not used in any of the prime ECDLP records
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Pollard ρ, [Pollard-78]

Approximate random walk in 〈P〉.
Index function ` : 〈P〉 = G0 ∪ . . . ∪ Gt−1 7→ [0, t − 1]

Gi = {x : x ∈ 〈P〉, `(x) = i}, |Gi | ≈
n

t
Precomputed partition constants: f0, . . . , ft−1

r-adding walk r + s-mixed walk
t = r t = r + s

pi+1 = pi + f`(pi ) pi+1 =

{
pi + f`(pi ), if 0 ≤ `(pi ) < r

2pi , if `(pi ) ≥ r

[Teske-01]: r=20 performance close to a random walk.
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The Negation Map

[Wiener,Zuccherato-98]

Equivalence relation ∼ on 〈P〉 by p ∼ −p for p ∈ 〈P〉.

〈P〉 of size n versus 〈P〉/∼ of size about n
2 .

Advantage: Reduces the number of steps by a factor of
√

2.
Efficient to compute: Given (x , y) ∈ 〈P〉 → −(x , y) = (x ,−y)

Compute
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Negation Map, Side-Effects

Well-known disadvantage: as presented no solution to large ECDLPs

p
(i ,−)−→ −(p + fi )

(i ,−)−→ p.

Fruitless 2-cycle starts from a random point with probability 1
2r

[Duursma,Gaudry,Morain-99] (Proposition 31)

2-cycle reduction technique: [Wiener,Zuccherato-98]

f (p) =

{
E (p) if j = `(∼(p + fj )) for 0 ≤ j < r
∼(p + fi ) with i ≥ `(p) minimal s.t. `(∼(p + fi )) 6= i mod r .

once every r r steps: E : 〈P〉 → 〈P〉 may restart the walk

Cost increase c =
r∑

i=0

1

r i
with 1 + 1

r ≤ c ≤ 1 + 1
r−1 .
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Dealing with Fruitless Cycles in General
[Gallant,Lambert,Vanstone-00]

Cycle detection

︸ ︷︷ ︸
α steps

β steps︷ ︸︸ ︷ p

Compare p to all β points. Detect cycles of length ≤ β.

Cycle Escaping

Add

f`(p)+c for a fixed c ∈ Z

a precomputed value f′

f′′`(p) from a distinct list of r precomputed values f′′0, f
′′
1, . . . , f

′′
r−1.

to a representative element of this cycle.
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2-cycles when using the 2-cycle reduction technique

p −p−fi = q

(i−1, ..) (i−1, ..)

ℓ(∼(p+fi−1))
= i−1

ℓ(∼(q+fi−1))
= i−1.

(i,−)

(i,−)

Lemma

The probability to enter a fruitless 2-cycle when looking ahead to reduce
2-cycles while using an r-adding walk is

1

2r

(
r−1∑
i=1

1

r i

)2

=
(r r−1 − 1)2

2r2r−1(r − 1)2
=

1

2r3
+ O

(
1

r4

)
.
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4-cycle Reduction

p
(i ,+)−→ p + fi

(j ,−)−→ −p− fi − fj
(i ,+)−→ −p− fj

(j ,−)−→ p.

Fruitless 4-cycle starts with probability r−1
4r3 .

Extend the 2-cycle reduction method to reduce 4-cycles:

g(p)=


E (p) if j ∈ {`(q), `(∼(q + f`(q)))} or `(q) = `(∼(q + f`(q)))

where q =∼(p + fj ), for 0 ≤ j < r ,
q =∼(p + fi ) with i ≥ `(p) minimal s.t.

i mod r 6= `(q) 6= `(∼(q + f`(q))) 6= i mod r .

Disadvantage: more expensive iteration function: ≥ r+4
r

Advantage: positive effect of
√

r−1
r since

image(g) ⊂ 〈P〉 with |image(g)| ≈ r−1
r |〈P〉|.
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2-cycles with Cycle Reduction

With 2-cycle reduction With 4-cycle reduction

p −p−fi = q

(i−1, ..) (i−1, ..)

ℓ(∼(p+fi−1))
= i−1

ℓ(∼(q+fi−1))
= i−1.

(i,−)

(i,−)

p
−p−fi
= q

(i−1, ..) (i−1, ..)

p̄ =
∼(p+fi−1)

q̄ =
∼(q+fi−1)

ℓ(∼(p̄+fj))
∈ {i−1, j}

ℓ(∼(q̄+fk))
∈ {i−1, k}

(i,−)

(i,−)

(k, ..)(j, ..)

≥ 1
2r3 ≥ 2(r−2)2

(r−1)r4

33 / 40



Example: 4-cycle with 4-cycle reduction

`(∼(p̃ + fk)) ∈ {i, k} `(∼(q̃ + fn) ∈ {j, n}

p̃ =∼(p + fi) ∼(−p− fj+1 + fj) = q̃

p

(j + 1,−)

−p− fj+1

p + fi+1

(j + 1,−)

−p− fi+1 − fj+1

p̄ =∼(p + fi+1 + fj) ∼(−p− fi+1 − fj+1 + fi) = q̄

`(∼(p̄ + fl)) ∈ {j, l} `(∼ (q̄ + fm)) ∈ {i,m}

(i + 1,+) (i + 1,+)

(i, ..)

(k, ..)

(j, ..)

(n, ..)

(j, ..)

(l, ..)

(i, ..)

(m, ..)
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Size of the Random Walk

Probability to enter cycle depends on the number of partitions r

Why not simply increase r?
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Fruitless cycles still occur
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Recurring Cycles

Using

r -adding walk with a medium sized r and
{ 2, 4 }-reduction technique and
cycle escaping techniques

it is expected that many walks will never find a DTP.

−p− fi − fj

p

−p− fj

(i,+)

(j,−)

p+ fi

(j,−)

(i,+)

p+ fk

(k,+) −p− fk − fj

(j,−)

(k,+)

−p− fi − fk

(i,−)

(k,−)
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Probabilities Overview

Cycle reduction method: none 2-cycle 4-cycle

Probability to enter

{
2-cycle

4-cycle

1
2r

1
2r3

2(r−2)2

(r−1)r4

r−1
4r3

r−1
4r3

4(r−2)4(r−1)
r11

Probability to recur
to escape point using


f`(p)+c

f′

f′′`(p)

1
2r

1
2r2

(r−2)2

r4

1
8r

1
8r3

(r−2)2

2r5

1
8r2

1
8r4

(r−2)2

2r6

Slowdown factor of iteration function n/a r+1
r

r+4
r
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Dealing with Recurring Cycles

Heuristic

A cycle with at least one doubling is most likely not fruitless.

Reduce the number of fruitless (recurring) cycles by using a mixed-walk

Advantage: Avoid recurring cycles

Disadvantage: EC-doublings (7M) are more expensive than
EC-additions (6M)
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Experiments @ AMD Phenom 9500

Long-term yield: run 2× 109 iterations, ignore the first 109.

Yield: speed-up
#additional additions
#duplications

}
max. theoretical speedup

r = 16 r = 32 r = 64 r = 128 r = 256 r = 512

Without negation map
7.29: 0.98 7.28: 0.99 7.27: 1.00 7.19: 0.99 6.97: 0.96 6.78: 0.94

With negation map
just g 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.04: 0.01 3.59: 0.70
just ē 3.34: 0.64 4.89: 0.95 5.85: 1.14 6.10: 1.19 6.28: 1.23 6.18: 1.21

f , e
0.00: 0.00 0.00: 0.00 1.52: 0.30 5.93: 1.16 6.47: 1.27 6.36: 1.25
9.4e8
0.0e0}0 .08 6.6e8

0.0e0}0 .48 1.0e8
0.0e0}1 .28 3.6e7

0.0e0}1 .37 2.9e7
0.0e0}1 .38 2.5e7

0.0e0}1 .39

f , ē
3.71: 0.72 6.36: 1.24 6.50: 1.27 6.57: 1.29 6.47: 1.27 6.30: 1.25
9.2e7
9.9e5}1 .27 6.8e7

2.8e5}1 .32 4.2e7
6.5e4}1 .36 3.3e7

1.5e4}1 .38 2.9e7
3.8e3}1 .38 2.7e7

9.7e2}1 .39

g , e
0.00: 0.00 0.01: 0.00 4.89: 0.96 6.22: 1.22 6.23: 1.22 6.05: 1.19
8.7e8
0.0e0}0 .19 3.7e8

0.0e0}0 .91 6.6e7
0.0e0}1 .34 4.2e7

0.0e0}1 .37 3.3e7
0.0e0}1 .38 1.3e7

0.0e0}1 .41

g , ē
0.76: 0.15 5.91: 1.17 6.02: 1.18 6.25: 1.23 6.13: 1.20 6.00: 1.18
3.3e8
1.6e5}0 .97 1.7e8

6.0e4}1 .19 8.1e7
8.1e3}1 .32 5.4e7

1.0e3}1 .35 4.0e7
1.2e2}1 .37 2.7e7

9.0e0}1 .39
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Conclusions

Using the negation map optimization technique for solving prime ECDLPs
is useful in practice when

{ 2, 4 }-cycle reduction techniques are used

recurring cycles are avoided; e.g. escaping by doubling

use medium sized r -adding walk (r = 128)

Using all this we managed to get a speedup of at most:

1.29 <
√

2 (≈ 1.41)

More details and experiments in the article.

Future Work

Better cycle reduction or escaping techniques?
Can we do better than 1.29 speedup?
Special algorithms for SIMD-architectures.
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D. J. Bernstein, T. Lange, and P. Schwabe: On the correct use of the negation map in the Pollard rho method. PKC 2011

Straight-line algorithm to compute the negation map (branch-free)

2048-adding walk on the cache-less SPE of the Cell

no direct comparison between negation and non-negation map setting

estimated ≈ 1.37 speed-up
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