How to solve a 112-bit ECDLP using game consoles

Joppe W. Bos

Laboratory for Cryptologic Algorithms EPFL, Station 14, CH-1015 Lausanne, Switzerland

> ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Outline

- The Cell Broadband Engine Architecture
 - H. P. Hofstee. Power efficient processor architecture and the Cell processor. HPCA 2005, pages 258-262, 2005.
- Project 1: 112-bit prime field ECDLP
- Project 2: On the Use of the Negation Map in the Pollard Rho Method

	PS3	PS3	PCle	BladeServer
	slim	discontinued		QS22*
Speed	3.2GHz	3.2GHz	2.8GHz	3.2GHz
#SPEs	6	6	8	16
Memory	\approx 256MB	\approx 256MB	4GB	\leq 32GB
Price	\$299.99	\$100 - \$300	pprox \$8k	\$10k – \$14k
Power	250W	280W	210W	230W
Compatibility	PSOne	PSOne, <mark>Linux</mark>	Linux	Linux

 \star IBM PowerXCell 8i processor, offering five times the double precision performance of the previous Cell/B.E. processor.

The SPEs contain

- a Synergistic Processing Unit (SPU)
 - Access to 128 registers of 128-bit
 - SIMD operations
 - Dual pipeline (odd and even)
 - In-order processor
- 256 KB of fast local memory (Local Store)
- Memory Flow Controller (MFC)
 - Direct Memory Access (DMA) controller
 - Handles synchronization operations to the other SPUs and the PPU
 - DMA transfers are independent of the SPU program execution

SPU registers

- Byte (8-bit): 16-way SIMD
- Half-word (16-bit): 8-way SIMD
- Word (32-bit): 4-way SIMD

All distinct binary operations $f:\{0,1\}^2 \rightarrow \{0,1\}$ are present. Furthermore:

shuffle bytes	add/sub extended
or across	count leading zeros
average of two vectors	count ones in bytes
select bits	gather lsb
carry/borrow generate	sum bytes
multiply and add	multiply and subtract

only but, $16\times16\to32\text{-bit}$ multiplication $16\times16+32\to32\text{-bit}$ multiply-and-add instruction

All distinct binary operations $f:\{0,1\}^2 \rightarrow \{0,1\}$ are present. Furthermore:

shuffle bytes	add/sub extended
or across	count leading zeros
average of two vectors	count ones in bytes
select bits	gather lsb
carry/borrow generate	sum bytes
multiply and add	multiply and subtract

only 4-way SIMD 16 \times 16 \rightarrow 32-bit multiplication but, 4-way SIMD 16 \times 16 + 32 \rightarrow 32-bit multiply-and-add instruction

Branching

- No "smart" dynamic branch prediction
- Instead "prepare-to-branch" instructions to redirect instruction prefetch to branch targets
- Memory
 - The executable and all data should fit in the LS
 - Or perform manual DMA requests to the main memory (max. 214 MB)
- Instruction set limitations
 - $16 \times 16 \rightarrow 32$ bit multipliers (4-SIMD)
- Challenge
 - One odd and one even instruction can be dispatched per clock cycle.

- Physically in the cluster room: 190 PS3s
- 6 × 4 PS3s in the PlayLaB (attached to the cluster)
- 5 PS3 in our offices for programming purposes
- \Rightarrow 219 PS3s in total.

Outline

• The Cell Broadband Engine Architecture

• Project 1: 112-bit prime field ECDLP

- Joppe W. Bos, Marcelo E. Kaihara, Thorsten Kleinjung, Arjen K. Lenstra, Peter L. Montgomery: Solving a 112-bit Prime Elliptic Curve Discrete Logarithm Problem on Game Consoles using Sloppy Reduction In The International Journal of Applied Cryptography, 2011 (to appear)
- Project 2: On the Use of the Negation Map in the Pollard Rho Method

The setting:

- E is an elliptic curve over \mathbf{F}_p with p odd prime.
- $P \in E(\mathbf{F}_p)$ a point of (prime) order n.
- $Q = k \cdot P \in \langle P \rangle.$

Problem: Given E, p, n, P and Q what is k?

Certicom Challenge

- Solve the ECDLP for EC over \mathbf{F}_p (p odd prime) and \mathbf{F}_{2^m} .
- 109-bit prime challenge solved in November 2002 by Chris Monico Required time: 4000-5000 PCs working 24/7 for one year.
- Next challenge is an EC over an 131-bit prime field

The 131-bit challenge requires 2000 times the effort of the 109-bit

ECC Standards

- Standard for Efficient Cryptography (SEC), SEC2: Recommended Elliptic Curve Domain Parameters Prime fields bit length: { 112, 128, 160, 192, 224, 256, 384, 521 }
- Wireless Transport Layer Security Specification Prime fields bit length: { 112, 160, 224 }
- Digital Signature Standard (FIPS PUB 186-3)
 Prime fields bit length: { 192, 224, 256, 384, 521 }

ECC Standards

- Standard for Efficient Cryptography (SEC), SEC2: Recommended Elliptic Curve Domain Parameters Prime fields bit length: { 112, 128, 160, 192, 224, 256, 384, 521 }
- Wireless Transport Layer Security Specification Prime fields bit length: { 112, 160, 224 }
- Digital Signature Standard (FIPS PUB 186-3)
 Prime fields bit length: { 192, 224, 256, 384, 521 }

How fast can we solve this 112-bit ECDLP?

Pollard rho

The most efficient algorithm in the literature (for generic curves) is Pollard rho. The underlying idea of this method is to search for two distinct pairs $(c_i, d_i), (c_j, d_j) \in \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ such that

$$c_i \cdot P + d_i \cdot Q = c_j \cdot P + d_j \cdot Q$$

 $(c_i - c_j) \cdot P = (d_j - d_i) \cdot Q = (d_j - d_i)k \cdot P$
 $k \equiv (c_i - c_j)(d_j - d_i)^{-1} \mod n$

J. M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics of Computation, 32:918-924, 1978.

Pollard Rho

• "Walk" through the set $\langle P
angle$

•
$$X_i = c_i \cdot P + d_i \cdot Q$$

- Iteration function $f:\langle P \rangle \rightarrow \langle P \rangle$
- This sequence eventually collides

• Expected number of steps (iterations):
$$\sqrt{\frac{\pi \cdot |\langle P \rangle|}{2}}$$

Integer Representation

- Optimize for high-throughput, not low-latency
 - Interleave two 4-way SIMD streams
- An efficient 4-way SIMD modular inversion algorithm
- Compute on 400 curves in parallel
 - simultaneous inversion (Montgomery)
- Do not use the negation map optimization

- Optimize for high-throughput, not low-latency
 - Interleave two 4-way SIMD streams
- An efficient 4-way SIMD modular inversion algorithm
- Compute on 400 curves in parallel
 - simultaneous inversion (Montgomery)
- Do not use the negation map optimization

Trade correctness for speed

- When adding points X and Y do not check if X = Y. Save code size *and* increase performance (no branching).
- Faster modular reduction which might compute the wrong result.

112-bit target

The 112-bit prime p used in the target curve $E(\mathbf{F}_p)$ is

$$p = \frac{2^{128} - 3}{11 \cdot 6949}$$

Let $R = 2^{128}$, use a redundant representation modulo $\tilde{p} = R - 3 = 11 \cdot 6949 \cdot p$

Note: $x \cdot 2^{128} \equiv x \cdot 3 \mod \widetilde{p}$

$$\begin{array}{rccc} \mathfrak{R}: & \mathbf{Z}/2^{256}\mathbf{Z} & \to & \mathbf{Z}/2^{256}\mathbf{Z} \\ & x & \mapsto & \left(x \bmod 2^{128}\right) + 3 \cdot \left\lfloor \frac{x}{2^{128}} \right. \end{array}$$

 $x = x_H \cdot 2^{128} + x_L \equiv x_L + 3 \cdot x_H = \Re(x) \mod \widetilde{p}$

How often does it happen that $\Re(\Re(a \cdot b)) >= R$?

Given $x = x_0 + x_1 R$, $0 \le x < R^2$, then $\Re(x) = x_0 + 3x_1 = y = y_0 + y_1 R \le 4R - 4$ and hence: $y_1 \le 3$ How often does it happen that $\Re(\Re(a \cdot b)) >= R$?

Given $x = x_0 + x_1 R$, $0 \le x < R^2$, then $\Re(x) = x_0 + 3x_1 = y = y_0 + y_1 R \le 4R - 4$ and hence: $y_1 \le 3$

If
$$y_1 = 3$$
, then $y_0 + y_1R = y_0 + 3R \le 4R - 4$ and thus $y_0 \le R - 4$.
If $y_1 \le 2$, then $y_0 \le R - 1$.
 $\Re(\Re(x)) = \begin{cases} y_0 + 3y_1 \le (R - 4) + 3 \cdot 3\\ y_0 + 2y_1 \le (R - 1) + 3 \cdot 2 \end{cases} = R + 5.$

Rough heuristic approximation: $\frac{6}{R+6}$

How often does it happen that $\mathfrak{R}(\mathfrak{R}(a \cdot b)) >= R$?

Given
$$x = x_0 + x_1 R$$
, $0 \le x < R^2$, then
 $\Re(x) = x_0 + 3x_1 = y = y_0 + y_1 R \le 4R - 4$ and hence: $y_1 \le 3$

If
$$y_1 = 3$$
, then $y_0 + y_1R = y_0 + 3R \le 4R - 4$ and thus $y_0 \le R - 4$.
If $y_1 \le 2$, then $y_0 \le R - 1$.
 $\Re(\Re(x)) = \begin{cases} y_0 + 3y_1 \le (R - 4) + 3 \cdot 3\\ y_0 + 2y_1 \le (R - 1) + 3 \cdot 2 \end{cases} = R + 5.$

Rough heuristic approximation: $\frac{6}{R+6}$ More sophisticated heuristic:

$$\left(\frac{\varphi(\tilde{p})}{\tilde{p}}\right) \cdot \sum_{k=1,2} \left(3 - k - k \log\left(\frac{3}{k}\right)\right) \approx \frac{0.99118}{R} < \frac{1}{R}$$

Operation	Operation Average # cycles		Operations	Average # cycles
(sloppy modulus $\tilde{p} = 2^{128} - 3$,	per two interleaved	per operation	per iteration	per iteration
modulus $p = \frac{\tilde{p}}{11.6949}$)	4-SIMD operations			
Sloppy multiplication modulo \tilde{p}	430	54	6	322
(multiplication+reduction)	(318 + 112) (40 + 14)			
Modular subtraction	40 even, 24 odd: 40 total	5	6	30
Modular inversion	n/a	4941	$\frac{1}{400}$	12
Unique representation mod p	192	24	1	24
Miscellaneous	544	68	1	68
Total				456

Operation Average # cycles		Average # cycles	Operations	Average # cycles
(sloppy modulus $\tilde{p} = 2^{128} - 3$,	per two interleaved	per operation	per iteration	per iteration
modulus $p = \frac{\tilde{p}}{11.6949}$)	4-SIMD operations			
Sloppy multiplication modulo \tilde{p}	430	54	6	322
(multiplication+reduction)	(318 + 112) (40 + 14)			
Modular subtraction	40 even, 24 odd: 40 total	5	6	30
Modular inversion	n/a	4941	$\frac{1}{400}$	12
Unique representation mod p	192	24	1	24
Miscellaneous	544	68	1	68
Total				456

Hence, our 214-PS3 cluster:

- \bullet computes $9.1\cdot 10^9\approx 2^{33}$ iterations per second
- works on > 0.5M curves in parallel

Storage

- Per PS3: one distinguished point (4 \times 16 bytes) per two second
- ullet When storing the data naively: \approx 300GB expected

XC3S1000 FPGAs [1]

- FPGA-results of EC over 96- and 128-bit generic prime fields for COPACOBANA [2]
- Can host up to 120 FPGAs (US\$ 10,000)

Our implementation

- Targeted at 112-bit prime curve
- Use 128-bit multiplication + fast reduction modulo \widetilde{p}
- For US\$ 10,000 buy 33 PS3s

 T. Güneysu, C. Paar, and J. Pelzl. Special-purpose hardware for solving the elliptic curve discrete logarithm problem. ACM Transactions on Reconfigurable Technology and Systems, 1(2):1-21, 2008.
 S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Breaking ciphers with COPACOBANA a cost-optimized parallel code breaker. In CHES 2006, volume 4249 of LNCS, pages 101-118, 2006.

	96 bits	128 bits	
COPACOBANA	$4.0 \cdot 10^{7}$	$2.1 \cdot 10^{7}$	
+ Moore's law	$7.9 \cdot 10^7$	$4.2 \cdot 10^7$	
+ Negation map	$1.1 \cdot 10^{8}$	$5.9 \cdot 10^{7}$	
PS3	$4.2 \cdot 10^7$		
33 PS3	$1.4\cdot 10^9$		

33 PS3 / COPACOBANA (96 bits): 12.4 times faster 33 PS3 / COPACOBANA (128 bits): 23.8 times faster

	96 bits	128 bits	
COPACOBANA	$4.0 \cdot 10^{7}$	$2.1 \cdot 10^{7}$	
+ Moore's law	$7.9\cdot 10^7$	$4.2 \cdot 10^7$	
+ Negation map	$1.1 \cdot 10^{8}$	$5.9 \cdot 10^{7}$	
PS3	$4.2 \cdot 10^{7}$		
33 PS3	1.4 ·	10 ⁹	

33 PS3 / COPACOBANA (96 bits): 12.4 times faster 33 PS3 / COPACOBANA (128 bits): 23.8 times faster

Note

The 33 dual-threaded PPE were not used

The new COPACOBANA has faster FPGAs (no performance results known yet).

The point *P* of prime order *n* is given in the standard. The *x*-coordinate of *Q* was chosen as $\lfloor (\pi - 3)10^{34} \rfloor$. The point *P* of prime order *n* is given in the standard. The *x*-coordinate of *Q* was chosen as $\lfloor (\pi - 3)10^{34} \rfloor$.

- Expected #iterations $\sqrt{\frac{\pi \cdot n}{2}} \approx 8.4 \cdot 10^{16}$
- January 13, 2009 July 8, 2009 (not running continuously)
- When run continuously using the latest version of our code, the same calculation would have taken 3.5 months
- $P=\qquad (188281465057972534892223778713752,$
- Q = (1415926535897932384626433832795028,

 $\begin{array}{l} 3419875491033170827167861896082688)\\ 3846759606494706724286139623885544) \end{array}$

n = 4451685225093714776491891542548933

The point *P* of prime order *n* is given in the standard. The *x*-coordinate of *Q* was chosen as $\lfloor (\pi - 3)10^{34} \rfloor$.

- Expected #iterations $\sqrt{\frac{\pi\cdot n}{2}}\approx 8.4\cdot 10^{16}$
- January 13, 2009 July 8, 2009 (not running continuously)
- When run continuously using the latest version of our code, the same calculation would have taken 3.5 months
- P = (188281465057972534892223778713752,
- Q = (1415926535897932384626433832795028,

 $\begin{array}{l} 3419875491033170827167861896082688)\\ 3846759606494706724286139623885544) \end{array}$

n = 4451685225093714776491891542548933

$Q = 312521636014772477161767351856699 \cdot P$

- The Cell Broadband Engine Architecture
- Project 1: 112-bit prime field ECDLP
- Project 2: On the Use of the Negation Map in the Pollard Rho Method
 - Joppe W. Bos, Thorsten Kleinjung, Arjen K. Lenstra: On the Use of the Negation Map in the Pollard Rho Method In Algorithmic Number Theory (ANTS) 2010, volume 6197 of LNCS, pages 67-83, 2010

Study the negation map in practice when solving the elliptic curve discrete logarithm problem over prime fields.

- The Suite B Cryptography by the NSA allows elliptic curves over prime fields only.
- Solve ECDLPs fast \rightarrow break ECC-based schemes.

Using the (parallelized) Pollard ρ method

- 79-, 89-, 97- and 109-bit (2000) prime field Certicom challenges
- the 112-bit prime field ECDLP

have been solved.

Textbook optimization: negation map ($\sqrt{2}$ speed-up)

Study the negation map in practice when solving the elliptic curve discrete logarithm problem over prime fields.

- The Suite B Cryptography by the NSA allows elliptic curves over prime fields only.
- Solve ECDLPs fast \rightarrow break ECC-based schemes.

Using the (parallelized) Pollard ρ method

- 79-, 89-, 97- and 109-bit (2000) prime field Certicom challenges
- the 112-bit prime field ECDLP

have been solved.

Textbook optimization: negation map ($\sqrt{2}$ speed-up) not used in any of the prime ECDLP records Approximate random walk in $\langle P \rangle$. Index function $\ell : \langle P \rangle = G_0 \cup \ldots \cup G_{t-1} \mapsto [0, t-1]$ $G_i = \{x : x \in \langle P \rangle, \ell(x) = i\}, \qquad |G_i| \approx \frac{n}{t}$ Precomputed partition constants: $\mathfrak{f}_0, \ldots, \mathfrak{f}_{t-1}$

r-adding walkr + s-mixed walkt = rt = r + s $\mathfrak{p}_{i+1} = \mathfrak{p}_i + \mathfrak{f}_{\ell(\mathfrak{p}_i)}$ $\mathfrak{p}_i + \mathfrak{f}_{\ell(\mathfrak{p}_i)}, \quad \text{if } 0 \le \ell(\mathfrak{p}_i) < r$ $\mathfrak{p}_{i+1} = \begin{cases} \mathfrak{p}_i + \mathfrak{f}_{\ell(\mathfrak{p}_i)}, & \text{if } \ell(\mathfrak{p}_i) \ge r \end{cases}$

[Teske-01]: r=20 performance close to a random walk.

[Wiener,Zuccherato-98]

Equivalence relation \sim on $\langle P \rangle$ by $\mathfrak{p} \sim -\mathfrak{p}$ for $\mathfrak{p} \in \langle P \rangle$.

$$\langle P \rangle$$
 of size *n* versus $\langle P \rangle /\!\!\sim$ of size about $\frac{n}{2}$.

Advantage: Reduces the number of steps by a factor of $\sqrt{2}$. **Efficient to compute:** Given $(x, y) \in \langle P \rangle \rightarrow -(x, y) = (x, -y)$ [Wiener,Zuccherato-98]

Equivalence relation \sim on $\langle P \rangle$ by $\mathfrak{p} \sim -\mathfrak{p}$ for $\mathfrak{p} \in \langle P \rangle$.

 $\langle P \rangle$ of size *n* versus $\langle P \rangle /\!\!\sim$ of size about $\frac{n}{2}$.

Advantage: Reduces the number of steps by a factor of $\sqrt{2}$. **Efficient to compute:** Given $(x, y) \in \langle P \rangle \rightarrow -(x, y) = (x, -y)$

Compute

$$\mathfrak{p}_i + \mathfrak{f}_{\ell(\mathfrak{p}_i)} \ (\mathfrak{p}_i + \mathfrak{f}_{\ell(\mathfrak{p}_i)})$$

[Wiener,Zuccherato-98]

Equivalence relation \sim on $\langle P \rangle$ by $\mathfrak{p} \sim -\mathfrak{p}$ for $\mathfrak{p} \in \langle P \rangle$.

$$\langle P \rangle$$
 of size *n* versus $\langle P \rangle /\!\!\sim$ of size about $\frac{n}{2}$.

Advantage: Reduces the number of steps by a factor of $\sqrt{2}$. **Efficient to compute:** Given $(x, y) \in \langle P \rangle \rightarrow -(x, y) = (x, -y)$

Compute $\begin{array}{c} \mathfrak{p}_i + \mathfrak{f}_{\ell(\mathfrak{p}_i)} \\ -(\mathfrak{p}_i + \mathfrak{f}_{\ell(\mathfrak{p}_i)}) \end{array} = \mathfrak{p}_{i+1} \end{array}$

Well-known disadvantage: as presented no solution to large ECDLPs

Well-known disadvantage: fruitless cycles

$$\mathfrak{p} \stackrel{(i,-)}{\longrightarrow} -(\mathfrak{p}+\mathfrak{f}_i) \stackrel{(i,-)}{\longrightarrow} \mathfrak{p}.$$

Fruitless 2-cycle starts from a random point with probability $\frac{1}{2r}$ [Duursma,Gaudry,Morain-99] (Proposition 31)

Well-known disadvantage: fruitless cycles

$$\mathfrak{p} \stackrel{(i,-)}{\longrightarrow} -(\mathfrak{p} + \mathfrak{f}_i) \stackrel{(i,-)}{\longrightarrow} \mathfrak{p}.$$

Fruitless 2-cycle starts from a random point with probability $\frac{1}{2r}$ [Duursma,Gaudry,Morain-99] (Proposition 31)

2-cycle reduction technique: [Wiener, Zuccherato-98]

$$f(\mathfrak{p}) = \begin{cases} E(\mathfrak{p}) & \text{if } j = \ell(\sim(\mathfrak{p} + \mathfrak{f}_j)) \text{ for } 0 \leq j < r \\ \sim(\mathfrak{p} + \mathfrak{f}_i) & \text{with } i \geq \ell(\mathfrak{p}) \text{ minimal s.t. } \ell(\sim(\mathfrak{p} + \mathfrak{f}_i)) \neq i \text{ mod } r. \end{cases}$$

once every r^r steps: $E : \langle P \rangle \rightarrow \langle P \rangle$ may restart the walk

Cost increase
$$c = \sum_{i=0}^{\infty} \frac{1}{r^i}$$
 with $1 + \frac{1}{r} \le c \le 1 + \frac{1}{r-1}$.

Dealing with Fruitless Cycles in General [Gallant,Lambert,Vanstone-00]

Cycle Escaping

Add

- $\mathfrak{f}_{\ell(\mathfrak{p})+c}$ for a fixed $c \in \mathbf{Z}$
- \bullet a precomputed value \mathfrak{f}'
- $\mathfrak{f}''_{\ell(\mathfrak{p})}$ from a distinct list of r precomputed values $\mathfrak{f}''_0, \mathfrak{f}''_1, \ldots, \mathfrak{f}''_{r-1}$.

to a representative element of this cycle.

2-cycles when using the 2-cycle reduction technique

Lemma

The probability to enter a fruitless 2-cycle when looking ahead to reduce 2-cycles while using an r-adding walk is

$$\frac{1}{2r}\left(\sum_{i=1}^{r-1}\frac{1}{r^{i}}\right)^{2} = \frac{(r^{r-1}-1)^{2}}{2r^{2r-1}(r-1)^{2}} = \frac{1}{2r^{3}} + O\left(\frac{1}{r^{4}}\right).$$

$$\mathfrak{p} \xrightarrow{(i,+)} \mathfrak{p} + \mathfrak{f}_i \xrightarrow{(j,-)} -\mathfrak{p} - \mathfrak{f}_i - \mathfrak{f}_j \xrightarrow{(i,+)} -\mathfrak{p} - \mathfrak{f}_j \xrightarrow{(j,-)} \mathfrak{p}.$$

Fruitless 4-cycle starts with probability $\frac{r-1}{4r^3}$.

$$\mathfrak{p} \xrightarrow{(i,+)} \mathfrak{p} + \mathfrak{f}_i \xrightarrow{(j,-)} -\mathfrak{p} - \mathfrak{f}_i - \mathfrak{f}_j \xrightarrow{(i,+)} -\mathfrak{p} - \mathfrak{f}_j \xrightarrow{(j,-)} \mathfrak{p}.$$

Fruitless 4-cycle starts with probability $\frac{r-1}{4r^3}$. Extend the 2-cycle reduction method to reduce 4-cycles:

$$g(\mathfrak{p}) = \begin{cases} \mathcal{E}(\mathfrak{p}) & \text{if } j \in \{\ell(\mathfrak{q}), \ell(\sim(\mathfrak{q} + \mathfrak{f}_{\ell(\mathfrak{q})}))\} \text{ or } \ell(\mathfrak{q}) = \ell(\sim(\mathfrak{q} + \mathfrak{f}_{\ell(\mathfrak{q})})) \\ & \text{where } \mathfrak{q} = \sim(\mathfrak{p} + \mathfrak{f}_j), \text{ for } 0 \leq j < r, \\ \mathfrak{q} = \sim(\mathfrak{p} + \mathfrak{f}_i) \text{ with } i \geq \ell(\mathfrak{p}) \text{ minimal s.t.} \\ & i \text{ mod } r \neq \ell(\mathfrak{q}) \neq \ell(\sim(\mathfrak{q} + \mathfrak{f}_{\ell(\mathfrak{q})})) \neq i \text{ mod } r. \end{cases}$$

Disadvantage: more expensive iteration function: $\geq \frac{r+4}{r}$ **Advantage:** positive effect of $\sqrt{\frac{r-1}{r}}$ since

 $\operatorname{image}(g) \subset \langle P \rangle$ with $\operatorname{image}(g) | \approx \frac{r-1}{r} |\langle P \rangle|$.

2-cycles with Cycle Reduction

Example: 4-cycle with 4-cycle reduction

$$\begin{split} \ell(\sim(\tilde{\mathfrak{p}}+\mathfrak{f}_k)) &\in \{i,k\} \bigoplus_{\substack{(k,..)\\ (k,..)\\ (k,..)$$

Size of the Random Walk

- Probability to enter cycle depends on the number of partitions r
- Why not simply increase r?

Size of the Random Walk

- Probability to enter cycle depends on the number of partitions r
- Why not simply increase r?

- Practical performance penalty (cache-misses)
- Fruitless cycles still occur

Recurring Cycles

Using

- *r*-adding walk with a medium sized *r* and
- { 2, 4 }-reduction technique and
- cycle escaping techniques

it is expected that many walks will never find a DTP.

Recurring Cycles

Using

- r-adding walk with a medium sized r and
- { 2, 4 }-reduction technique and
- cycle escaping techniques

it is expected that many walks will never find a DTP.

Cycle reduction method:	none	2-cycle	4-cycle
Probability to enter		$\frac{1}{2r^3}$ $\frac{r-1}{4r^3}$	$\frac{\frac{2(r-2)^2}{(r-1)r^4}}{\frac{4(r-2)^4(r-1)}{r^{11}}}$
Probability to recur to escape point using $\begin{cases} f_{\ell(p)+c} \\ f' \\ f''_{\ell(p)} \end{cases}$	$\frac{\frac{1}{2r}}{\frac{1}{8r}}$ $\frac{1}{\frac{1}{8r^2}}$	$\frac{1}{2r^2}$ $\frac{1}{8r^3}$ $\frac{1}{8r^4}$	$\frac{(r-2)^2}{r^4} \\ \frac{(r-2)^2}{2r^5} \\ \frac{(r-2)^2}{2r^6}$
Slowdown factor of iteration function	n/a	$\frac{r+1}{r}$	$\frac{r+4}{r}$

Heuristic

A cycle with at least one doubling is most likely not fruitless.

Reduce the number of fruitless (recurring) cycles by using a mixed-walk

- Advantage: Avoid recurring cycles
- **Disadvantage**: EC-doublings (7M) are more expensive than EC-additions (6M)

Experiments @ AMD Phenom 9500

Υ

Long-term yield: run 2×10^9 iterations, ignore the first 10^9 .

ield: speed-up #additional additions #duplications } max. theoretical speedup							
		<i>r</i> = 16	<i>r</i> = 32	<i>r</i> = 64	r = 128	r = 256	r = 512
	Withou	ut negation m	пар				
		7.29: 0.98	7.28: 0.99	7.27 : 1.00	7.19: 0.99	6.97: 0.96	6.78: 0.94
	With n	egation map					
	just g	0.00: 0.00	0.00: 0.00	0.00: 0.00	0.00: 0.00	0.04: 0.01	3.59: 0.70
	just ē	3.34: 0.64	4.89: 0.95	5.85: 1.14	6.10: 1.19	6.28: 1.23	6.18: 1.21
	c	0.00: 0.00	0.00: 0.00	1.52: 0.30	5.93: 1.16	6.47: 1.27	6.36: 1.25
	f, e 9.4e	$^{9.4e8}_{0.0e0}$ $\} 0.08$	^{6.6e8} 0.0e0}0.48	${}^{1.0e8}_{0.0e0}$ 1.28	$^{3.6e7}_{0.0e0}$ 1.37	$^{2.9e7}_{0.0e0}$ 1.38	$^{2.5e7}_{0.0e0}$ $\{1.39$
	c -	3.71: 0.72	6.36: 1.24	6.50: 1.27	6.57: 1.29	6.47: 1.27	6.30: 1.25
	<i>r</i> , e	${}^{9.2e7}_{9.9e5}$ 1.27	6.8e7 2.8e5}1.32	4.2e7 6.5e4}1.36	3.3e7 1.5e4}1.38	^{2.9e7} 3.8e3}1.38	$^{2.7e7}_{9.7e2}$ 1.39
Ę	g, e 0.00: 0.00 8.7e8 0.0e0}0.19	0.00: 0.00	0.01: 0.00	4.89: 0.96	6.22: 1.22	6.23: 1.22	6.05: 1.19
		^{8.7e8} 0.0e0}0.19	^{3.7e8} 0.0e0}0.91	6.6e7 0.0e0}1.34	$^{4.2e7}_{0.0e0}$ $\} 1.37$	^{3.3e7} 0.0e0}1.38	$^{1.3e7}_{0.0e0}$ $\} 1.41$
		0.76: 0.15	5.91: 1.17	6.02: 1.18	6.25: 1.23	6.13: 1.20	6.00: 1.18
	g, e	${}^{3.3e8}_{1.6e5}$ 0.97	${}^{1.7e8}_{6.0e4}$ 1.19	^{8.1e7} 8.1e3}1.32	${}^{5.4e7}_{1.0e3}$ 1.35	$^{4.0e7}_{1.2e2}$ 1.37	${}^{2.7e7}_{9.0e0}$ 1.39

Conclusions

Using the negation map optimization technique for solving prime ECDLPs is useful in practice when

- { 2, 4 }-cycle reduction techniques are used
- recurring cycles are avoided; e.g. escaping by doubling
- use medium sized r-adding walk (r = 128)

Using all this we managed to get a speedup of at most:

$$1.29 < \sqrt{2} \ (\approx 1.41)$$

More details and experiments in the article.

Future Work

Better cycle reduction or escaping techniques? Can we do better than 1.29 speedup? Special algorithms for SIMD-architectures.

Future Work

Better cycle reduction or escaping techniques? Can we do better than 1.29 speedup? Special algorithms for SIMD-architectures.

D. J. Bernstein, T. Lange, and P. Schwabe: On the correct use of the negation map in the Pollard rho method. PKC 2011

- Straight-line algorithm to compute the negation map (branch-free)
- 2048-adding walk on the cache-less SPE of the Cell
- no direct comparison between negation and non-negation map setting
- estimated ≈ 1.37 speed-up