How to solve a 112-bit ECDLP using game consoles

Joppe W. Bos

Laboratory for Cryptologic Algorithms
EPFL, Station 14, CH-1015 Lausanne, Switzerland

Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

@ The Cell Broadband Engine Architecture

@ H. P. Hofstee. Power efficient processor architecture and the Cell processor. HPCA 2005, pages 258-262, 2005.

@ Project 1: 112-bit prime field ECDLP

@ Project 2: On the Use of the Negation Map in the Pollard Rho
Method

SPE

o — [— | — = PU e — | r— | r—
[sxu {(sxu I sxu Tfiisxu J_sxu_1{{[sxu_J{I[sxu_][_sxv_]
v v v v v v
LS LS LS LS LS LS LS LS
[swE_[[TsmE | [SmE_]|[ZSME_J[_SME_||[“SME_]| [_S™E SMF |

6Bicycly v v \ 4 v v \ 4 A4
HB (up to 96Bicycle)
A A
PPE D 16B/cycle 16B/cycle (2x)
A
PPU MiC BIC

L1

e 16B[¢ycle

XU

L

\

Dual FlexIO™

XDR™

64-bit Power Architecture with VMX

Cell Availability

PS3 PS3 PCle BladeServer
slim discontinued QS22*
Speed 3.2GHz 3.2GHz 2.8GHz 3.2GHz
#SPEs 6 6 8 16
Memory ~256MB ~256MB 4GB <32GB
Price $299.99 $100 - $300 ~ $8k $10k — $14k
Power 250W 280W 210W 230W
Compatibility | PSOne PSOne, Linux Linux Linux

* IBM PowerXCell 8i processor, offering five times the double precision
performance of the previous Cell/B.E. processor.

Cell architecture, the SPEs

The SPEs contain
@ a Synergistic Processing Unit (SPU)

Access to 128 registers of 128-bit
SIMD operations

Dual pipeline (odd and even)

e In-order processor

@ 256 KB of fast local memory (Local Store)
e Memory Flow Controller (MFC)

o Direct Memory Access (DMA) controller
e Handles synchronization operations to the other SPUs and the PPU
o DMA transfers are independent of the SPU program execution

SPU registers

Preferred Slot Byte Index

Registers : : : : 5 : : : 9 : : : : . :
‘ ADDRESS H
‘ WORD H
‘ DOUBLEWORD H
‘ QUAD WORD
e Byte (8-bit): 16-way SIMD
e Half-word (16-bit): 8-way SIMD
e Word (32-bit): 4-way SIMD

Special SPU instructions

All distinct binary operations f : {0,1}? — {0,1} are present.
Furthermore:

shuffle bytes add/sub extended
or across count leading zeros
average of two vectors count ones in bytes
select bits gather Isb
carry/borrow generate sum bytes
multiply and add multiply and subtract
only 16 x 16 — 32-bit multiplication
but, 16 x 16 4+ 32 — 32-bit multiply-and-add instruction

Special SPU instructions

All distinct binary operations f : {0,1}? — {0,1} are present.
Furthermore:

shuffle bytes add/sub extended

or across count leading zeros
average of two vectors count ones in bytes
select bits gather Isb
carry/borrow generate sum bytes

multiply and add multiply and subtract

only 4-way SIMD 16 x 16 — 32-bit multiplication
but, 4-way SIMD 16 x 16 4+ 32 — 32-bit multiply-and-add instruction

Considerations

@ Branching

e No “smart” dynamic branch prediction
o Instead “prepare-to-branch” instructions to redirect instruction prefetch
to branch targets

e Memory

e The executable and all data should fit in the LS
o Or perform manual DMA requests to the main memory (max. 214 MB)

@ Instruction set limitations
e 16 x 16 — 32 bit multipliers (4-SIMD)
Challenge

e One odd and one even instruction can be dispatched per clock cycle.

LACAL setup

@ Physically in the cluster room:
190 PS3s

@ 6 X 4 PS3s in the PlayLaB
(attached to the cluster)

@ 5 PS3 in our offices for
programming purposes

@ = 219 PS3s in total.

Outline

@ The Cell Broadband Engine Architecture
@ Project 1: 112-bit prime field ECDLP

@ Joppe W. Bos, Marcelo E. Kaihara, Thorsten Kleinjung, Arjen K. Lenstra, Peter L. Montgomery: Solving a
112-bit Prime Elliptic Curve Discrete Logarithm Problem on Game Consoles using Sloppy Reduction In The
International Journal of Applied Cryptography, 2011 (to appear)

@ Project 2: On the Use of the Negation Map in the Pollard Rho
Method

11/40

The Elliptic Curve Discrete Logarithm Problem (ECDLP)

The setting:
@ E is an elliptic curve over F, with p odd prime.
e P e E(F,) a point of (prime) order n.
e Q=k-Pec(P).

Problem: Given E, p,n, P and Q what is k?

12/40

ECDLP Parameters

Certicom Challenge
@ Solve the ECDLP for EC over F, (p odd prime) and Fonm.

@ 109-bit prime challenge solved in November 2002 by Chris Monico
Required time: 4000-5000 PCs working 24/7 for one year.

@ Next challenge is an EC over an 131-bit prime field

The 131-bit challenge requires 2000 times the effort of the 109-bit

13 /40

ECDLP Parameters

ECC Standards

e Standard for Efficient Cryptography (SEC),
SEC2: Recommended Elliptic Curve Domain Parameters
Prime fields bit length: { 112, 128, 160, 192, 224, 256, 384, 521 }

@ Wireless Transport Layer Security Specification
Prime fields bit length: { 112, 160, 224 }

e Digital Signature Standard (FIPS PUB 186-3)
Prime fields bit length: { 192, 224, 256, 384, 521 }

14 /40

ECDLP Parameters

ECC Standards

e Standard for Efficient Cryptography (SEC),
SEC2: Recommended Elliptic Curve Domain Parameters
Prime fields bit length: { 112, 128, 160, 192, 224, 256, 384, 521 }

@ Wireless Transport Layer Security Specification
Prime fields bit length: { 112, 160, 224 }

e Digital Signature Standard (FIPS PUB 186-3)
Prime fields bit length: { 192, 224, 256, 384, 521 }

How fast can we solve this 112-bit ECDLP?

14 /40

How fast can we solve an 112-bit ECDLP?

Pollard rho

The most efficient algorithm in the literature (for generic curves) is Pollard
rho. The underlying idea of this method is to search for two distinct pairs
(ci,di), (¢, dj) € Z/nZ x Z/nZ such that

¢i-P+di-Q=¢-P+d-Q

(ci—¢) P=(dj—d)-Q=(dj—d)k-P
k= (ci—¢)(dj —d;)™* mod n

J. M. Pollard. Monte Carlo methods for index computation (mod p).Mathematics of Computation, 32:918-924, 1978.

15 /40

y X)t3

Pollard Rho

e “Walk" through the set (P)
Xi:C;-P+di-Q

°
X1 ¢ e lIteration function f : (P) — (P)
"'.__ Xatpu—1 ‘XA+u—2 @ This sequence eventually collides
Xz“" @ Expected number of steps
(iterations): 4/ %
X1 1

Integer Representation

128-bit wide register

X [O] = | | | | ‘ | ‘ | |
| ——
the 32 (or 16) least significant bits of x» are located in
this 32-bit word (or in its 16 least significant bits)
x[j] = [16-bit, 16-bit| \ \ |
e
high low
: order order :
x[n—1] = | I I | \ | -
(x1, X2, X3, xq)

17 /40

Implementation Details

Optimize for high-throughput, not low-latency
o Interleave two 4-way SIMD streams

An efficient 4-way SIMD modular inversion algorithm

Compute on 400 curves in parallel
e simultaneous inversion (Montgomery)

@ Do not use the negation map optimization

18/40

Implementation Details

@ Optimize for high-throughput, not low-latency

o Interleave two 4-way SIMD streams
o An efficient 4-way SIMD modular inversion algorithm
@ Compute on 400 curves in parallel

e simultaneous inversion (Montgomery)

@ Do not use the negation map optimization

Trade correctness for speed

@ When adding points X and Y do not check if X = Y.
Save code size and increase performance (no branching).

@ Faster modular reduction which might compute the wrong result.

18 /40

Special Moduli

112-bit target
The 112-bit prime p used in the target curve E(F;) is

. 2128_3
P = 116949

Let R = 21?8, use a redundant representation modulo
pP=R—-3=11-6949.p

Note: x-21%8 =x.3 mod p

M: Z/2%%72 — Z/2%56Z7
X — (xmod 2!%) +3. | 5|

x=xy 22 4 x, =x +3- x4 = R(x) mod p

19 /40

Sloppy Reduction

How often does it happen that R(R(a - b)) >= R?

Given x = xp + x1R, 0 < x < R?, then
R(x)=x0+3x1=y=yo+y1R <4R —4 and hence: y; <3

20 /40

Sloppy Reduction

How often does it happen that R(R(a - b)) >= R?

Given x = xp + x1R, 0 < x < R?, then
R(x)=x0+3x1=y=yo+y1R <4R —4 and hence: y; <3

If y7 =3, then yo+y1R=y0+ 3R < 4R — 4 and thus yo < R — 4.
If y7 <2, then yp < R —1.

[w+3<(R-4)+3-3] _
SR(%(X))_{yo+2y1§(R—1)+3-2 =R+5.

6

Rough heuristic approximation: #¢

20/40

Sloppy Reduction

How often does it happen that R(R(a - b)) >= R?

Given x = xp + x1R, 0 < x < R?, then
R(x)=x0+3x1=y=yo+y1R <4R —4 and hence: y; <3

If y7 =3, then yo+y1R=y0+ 3R < 4R — 4 and thus yo < R — 4.
If y7 <2, then yp < R —1.

[w+3<(R-4)+3-3] _
SR(%(X))_{yo+2y1§(R—1)+3-2 =R+5.

6

Rough heuristic approximation: #¢

More sophisticated heuristic:

<s0§313)> '21;2 <3_ K Klog (D) - 0.9??118 B %

20/40

ormance Results

Operation Average # cycles Average # cycles Operations Average # cycles
(sloppy modulus p = 2128 _ 3, per two interleaved per operation per iteration per iteration
modulus p = ﬁ) 4-SIMD operations
Sloppy multiplication modulo p 430 54 6 322
(multiplication+reduction) (318 + 112) (40 + 14)
Modular subtraction 40 even, 24 odd: 40 total 5 6 30
Modular inversion n/a 4941 4—[1)0 12
Unique representation mod p 192 24 1 24
Miscellaneous 544 68 1 68

[Total 456

21 /40

Performance Results

Operation Average # cycles Average # cycles Operations Average # cycles
(sloppy modulus p = 2128 _ 3, per two interleaved per operation per iteration per iteration
modulus p = ﬁ) 4-SIMD operations
Sloppy multiplication modulo p 430 54 6 322
(multiplication+reduction) (318 + 112) (40 + 14)
Modular subtraction 40 even, 24 odd: 40 total 5 6 30
Modular inversion n/a 4941 4—[1)0 12
Unique representation mod p 192 24 1 24
Miscellaneous 544 68 1 68

[Total [456

Hence, our 214-PS3 cluster:
e computes 9.1 - 10° ~ 233 jterations per second

@ works on > 0.5M curves in parallel

Storage
@ Per PS3: one distinguished point (4 x 16 bytes) per two second

@ When storing the data naively: ~ 300GB expected

21/40

Comparison

XC351000 FPGAs [1]

@ FPGA-results of EC over 96- and 128-bit generic prime fields
for COPACOBANA [2]

@ Can host up to 120 FPGAs (US$ 10, 000)

Our implementation

@ Targeted at 112-bit prime curve
@ Use 128-bit multiplication + fast reduction modulo p
@ For US$ 10,000 buy 33 PS3s

[1] T. Giineysu, C. Paar, and J. Pelzl. Special-purpose hardware for solving the elliptic curve discrete logarithm problem. ACM
Transactions on Reconfigurable Technology and Systems, 1(2):1-21, 2008.
[2] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Breaking ciphers with COPACOBANA a cost-optimized parallel
code breaker. In CHES 2006, volume 4249 of LNCS, pages 101-118, 2006.

22 /40

Comparison

96 bits | 128 bits
COPACOBANA | 4.0-10 | 2.1- 107
+ Moore's law | 7.9-107 | 4.2-10
+ Negation map | 1.1-10% | 5.9- 107
PS3 4.2.107
33 PS3 1.4-10°

33 PS3 / COPACOBANA (96 bits): 12.4 times faster
33 PS3 / COPACOBANA (128 bits): 23.8 times faster

23 /40

Comparison

96 bits | 128 bits
COPACOBANA | 4.0-10 | 2.1- 107
+ Moore's law | 7.9-107 | 4.2-10
+ Negation map | 1.1-10% | 5.9- 107
PS3 4.2.107
33 PS3 1.4-10°

33 PS3 / COPACOBANA (96 bits): 12.4 times faster
33 PS3 / COPACOBANA (128 bits): 23.8 times faster

The 33 dual-threaded PPE were not used

The new COPACOBANA has faster FPGAs
(no performance results known yet).

23 /40

The 112-bit Solution

The point P of prime order n is given in the standard.
The x-coordinate of @ was chosen as | (7 — 3)1034].

24 /40

The 112-bit Solution

The point P of prime order n is given in the standard.
The x-coordinate of @ was chosen as | (7 — 3)1034].

o Expected #iterations /5" ~ 8.4 - 1016
e January 13, 2009 — July 8, 2009 (not running continuously)

@ When run continuously using the latest version of our code, the same
calculation would have taken 3.5 months

P = (188281465057972534892223778713752, 3419875491033170827167861896082688)
Q = (1415926535897932384626433832795028, 3846759606494706724286139623885544)
n= 4451685225093714776491891542548933

24 /40

The 112-bit Solution

The point P of prime order n is given in the standard.
The x-coordinate of @ was chosen as | (7 — 3)1034].

o Expected #iterations /5 ~ 8.4 - 101°

e January 13, 2009 — July 8, 2009 (not running continuously)

@ When run continuously using the latest version of our code, the same
calculation would have taken 3.5 months

P = (188281465057972534892223778713752, 3419875491033170827167861896082688)
Q = (1415926535897932384626433832795028, 3846759606494706724286139623885544)
n= 4451685225093714776491891542548933

@ = 312521636014772477161767351856699 - P

24 /40

Outline

@ The Cell Broadband Engine Architecture
@ Project 1. 112-bit prime field ECDLP

@ Project 2: On the Use of the Negation Map in the Pollard Rho
Method

@ Joppe W. Bos, Thorsten Kleinjung, Arjen K. Lenstra: On the Use of the Negation Map in the Pollard Rho
Method In Algorithmic Number Theory (ANTS) 2010, volume 6197 of LNCS, pages 67-83, 2010

25 /40

Study the negation map in practice when solving the elliptic curve discrete
logarithm problem over prime fields.

@ The Suite B Cryptography by the NSA allows elliptic curves over
prime fields only.

@ Solve ECDLPs fast — break ECC-based schemes.

Using the (parallelized) Pollard p method
@ 79-, 89-, 97- and 109-bit (2000) prime field Certicom challenges
@ the 112-bit prime field ECDLP

have been solved.

Textbook optimization: negation map (v/2 speed-up)

26 /40

Study the negation map in practice when solving the elliptic curve discrete
logarithm problem over prime fields.

@ The Suite B Cryptography by the NSA allows elliptic curves over
prime fields only.

@ Solve ECDLPs fast — break ECC-based schemes.

Using the (parallelized) Pollard p method
@ 79-, 89-, 97- and 109-bit (2000) prime field Certicom challenges
@ the 112-bit prime field ECDLP

have been solved.

Textbook optimization: negation map (v/2 speed-up)
not used in any of the prime ECDLP records

26 /40

Pollard p, [Pollard-78]

Approximate random walk in (P).
Index function ¢ : (P) = GoU...U Gt_1 — [0,t — 1]
G ={x:xe(P)lx)=i}, |G|~~_
Precomputed partition constants: fo, ... ,ftt_l

r-adding walk ‘ r + s-mixed walk
t=r t=r+s

o Pt ey, O L(pi) <r
Piy1 =pi+ fé(p,-) Piy1 = { 2Pi7 if K(Pi) > r

[Teske-01]: r=20 performance close to a random walk.

27 /40

The Negation Map

[Wiener,Zuccherato-98]

Equivalence relation ~ on (P) by p ~ —p for p € (P).

(P) of size n versus (P)/~ of size about 7.

Advantage: Reduces the number of steps by a factor of v/2.
Efficient to compute: Given (x,y) € (P) — —(x,y) = (x,—y)

28 /40

The Negation Map

[Wiener,Zuccherato-98]
Equivalence relation ~ on (P) by p ~ —p for p € (P).

(P) of size . versus (P)/~ of size about 7.

Advantage: Reduces the number of steps by a factor of v/2.
Efficient to compute: Given (x,y) € (P) — —(x,y) = (x,—y)

i+ Fupr)
_(pl + fZ(p,-))

Compute

28 /40

The Negation Map

[Wiener,Zuccherato-98]

Equivalence relation ~ on (P) by p ~ —p for p € (P).

(P) of size . versus (P)/~ of size about 7.

Advantage: Reduces the number of steps by a factor of v/2.
Efficient to compute: Given (x,y) € (P) — —(x,y) = (x,—y)

Pi + Fe(p;)

Compute
P —(pi + Fopy) = Piv1

28 /40

Negation Map, Side-Effects

Well-known disadvantage: as presented no solution to large ECDLPs

29 /40

Negation Map, Side-Effects

Well-known disadvantage: fruitless cycles

R R 1 =)

Fruitless 2-cycle starts from a random point with probability %
[Duursma,Gaudry,Morain-99] (Proposition 31)

29 /40

Negation Map, Side-Effects

Well-known disadvantage: fruitless cycles

R R 1 =)

Fruitless 2-cycle starts from a random point with probability %
[Duursma,Gaudry,Morain-99] (Proposition 31)

2-cycle reduction technique: [Wiener,Zuccherato-98]

(1) = { E(p) ifj=Ll(~(p+j)) for0<j<r

~(p +f;) with i > ¢(p) minimal s.t. £(~(p + §;)) # i mod r.

once every r" steps: E : (P) — (P) may restart the walk

,
. I
Costlncreasec:g —with14+1<c<1+ A5
r
i=0

29 /40

Dealing with Fruitless Cycles in General
[Gallant,Lambert,Vanstone-00]

Cycle detection
[steps
—_——p
T SRR
| S —

o steps

Compare p to all S points. Detect cycles of length < j3.

Cycle Escaping

Add
® fy(p)4c for afixed c € Z
@ a precomputed value §’

® fy from a distinct list of r precomputed values fg, 7, ..., /.

to a representative element of this cycle.

30 /40

2-cycles when using the 2-cycle reduction technique

U~(p+fir)) U~(a+fia))
=i—1 =1i—1

Lemma

The probability to enter a fruitless 2-cycle when looking ahead to reduce
2-cycles while using an r-adding walk is

2
1 (S (rr=1—1)2 1 1
Z(ZF) — st = 5+ 0 (%)

1=

31/40

4-cycle Reduction

i>+ .7_ ’a+ .7_
p U a4 99 —p—fi—1¥ ar —p—j 3 .

. . .y r*l
Fruitless 4-cycle starts with probability 7.

32/40

4-cycle Reduction

(i>+) (jv_) (i1+) (.7_)
p— p+fi — —p—fi—-f — —-p—-fi — »p
Fruitless 4-cycle starts with probability ’4%31.
Extend the 2-cycle reduction method to reduce 4-cycles:

E(p) if j € {€(q), £(~(a + fe(q)))} or £(a) = £(~(q + Fuq)))
where q =~(p +f;), for 0 <j <r,

q =~(p + ;) with / > ¢(p) minimal s.t.
i mod r # £(q) # £(~(q + fe(q))) # i mod r.

g(p)=

Disadvantage: more expensive iteration function: > #

r—1

Advantage: positive effect of |/ = since

image(g) C (P) with |image(g)| =~ ==|(P)|.

32/40

2-cycles with Cycle Reduction

With 2-cycle reduction

With 4-cycle reduction
(iaf)
T
(i) (i—1,.) (4,—) (i—1,.)
p= v v q=
P O/\ = (i) O O ~(q+fi-1)
(i—-1,..) ‘\(2{0 (i—1,..) G:) ()
& o O O
U~(p+Fia)) U(~(g+Fi)) U~(p+F5)) (~(@+k))
—i-1 =i—1 e{i—-1,7} €{i—-1,k}
> L > A2

33/40

Example: 4-cycle with 4-cycle reduction

O(~(p +Tx)) € {3, k} (A) (A) U(~(q+Fn) € {4,n}
(k,..) S (n,)
p=~(p+7i) CA) CA) ~=p —fj1+) =4
() gy G
—O P —fjn
(i +1,4) (i+1,+)
p+ it O—’ —p — fir1 — fj+1
o (Gt i .
(J,n); (i)
p=~(p+fir1+7j) (5 (5 ~=p = Fiv1 — i1 + i) =
(@), v(m y
U~(p+1)) €41} O O U~ (q+fm)) € {i,m}

34/40

Size of the Random Walk

@ Probability to enter cycle depends on the number of partitions r
@ Why not simply increase r?

35 /40

Size of the Random Walk

@ Probability to enter cycle depends on the number of partitions r
@ Why not simply increase r?

4.5e+06

4e+06

3.5e+06

3e+06 -

2.5e+06

2e+06

steps / second

1.5e+06 -

le+06 -

500000

0

2 4 6 8 10 12 14 16 18
log, (1)

@ Practical performance penalty (cache-misses)
@ Fruitless cycles still occur

35/40

Recurring Cycles

Using
o r-adding walk with a medium sized r and
o { 2, 4 }-reduction technique and
@ cycle escaping techniques
it is expected that many walks will never find a DTP.

36 /40

Recurring Cycles

Using
o r-adding walk with a medium sized r and
o { 2, 4 }-reduction technique and
@ cycle escaping techniques
it is expected that many walks will never find a DTP.
—p—Fi— ¥

(j7 ;)f‘o\(% +)
ptfi ~. h- f
(iv +) (.] ’ 7)

*P*fi*fkq (k,+) 40 —p—Fe—F;

T b
(’L’) P +fk (]’7)

36 /40

Probabilities Overview

Cycle reduction method: none 2-cycle 4-cycle

2-cycle i s 2r—2)2
Probability to enter y 2r1 2r 1(‘2*1%:(n
- r—1 r=1 r— r—
4-cycle T3 s T
j 1 1 (r—2)2
Probability to recur Ulp)+e 2r 2r (f42)2
. . 1 1 r—
to escape point using / 8r 33 T
£(p) 1 1 (r=2)
8r2 8r4 2r0
Slowdown factor of iteration function n/a £l 44

37/40

Dealing with Recurring Cycles
A cycle with at least one doubling is most likely not fruitless. \

Reduce the number of fruitless (recurring) cycles by using a mixed-walk

@ Advantage: Avoid recurring cycles

o Disadvantage: EC-doublings (7M) are more expensive than
EC-additions (6M)

38/40

Experiments @ AMD Phenom 9500

Long-term yield: run 2 x 10 iterations, ignore the first 10°.

Yield: speed-up
#additional additions

ool } max. theoretical speedup

| r=16 r=32 r =64 r=128 r=256 r=512

Without negation map

[7.29: 0.98 7.28: 0.99 7.27: 1.00 7.19: 0.99 6.97: 0.96 6.78: 0.94
With negation map
just g | 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.04: 0.01 3.59: 0.70
just 8 | 3.34: 0.64 4.89: 0.95 5.85: 1.14 6.10: 1.19 6.28: 1.23 6.18: 1.21

Fe ;).4(:2: 0.00 60.600: 0.00 1.52: 0.30 5.93: 1.16 6.47: 1.27 6.36: 1.25
’ 0:0510.08 5:0:530.48 §0e6y1.28 35011.37 G3e031.38 §ipep}1.39
3.71: 0.72 6.36: 1.24 6.50: 1.27 6.57: 1.29 6.47: 1.27 6.30: 1.25
S%ry1.27 §EIV132 (2731.36 3313138 $9031.38 2:7¢031.39
0.00: 0.00 0.01: 0.00 4.89: 0.96 6.22: 1.22 6.23: 1.22 6.05: 1.19

, €
€ 5:08310.19 3:725%0.91 §5731.34 §2731.37 F7ep)1.38 [iei}1.41
0.76: 0.15 5.91: 1.17 6.02: 1.18 6.25: 1.23 6.13: 1.20 6.00: 1.18

g, €
1.5810.97 §pegy1.19 §i5y1.32 §:3531.35 1:9531.37 §:5531.39

f,

[ell

39/40

Conclusions

Using the negation map optimization technique for solving prime ECDLPs
is useful in practice when

e { 2, 4 }-cycle reduction techniques are used
@ recurring cycles are avoided; e.g. escaping by doubling
@ use medium sized r-adding walk (r = 128)

Using all this we managed to get a speedup of at most:
1.29 < /2 (= 1.41)

More details and experiments in the article.

Better cycle reduction or escaping techniques?
Can we do better than 1.29 speedup?
Special algorithms for SIMD-architectures.

40 /40

Conclusions

Better cycle reduction or escaping techniques?
Can we do better than 1.29 speedup?
Special algorithms for SIMD-architectures.

D. J. Bernstein, T. Lange, and P. Schwabe: On the correct use of the negation map in the Pollard rho method. PKC 2011
Straight-line algorithm to compute the negation map (branch-free)
2048-adding walk on the cache-less SPE of the Cell

no direct comparison between negation and non-negation map setting

estimated & 1.37 speed-up

40 /40

	The Cell Broadband Engine
	Fast Implementation for a 112-bit ECDLP
	Results
	Performance Comparison

