How to solve a 112-bit ECDLP using game consoles

Outline

- The Cell Broadband Engine Architecture
- H. P. Hofstee. Power efficient processor architecture and the Cell processor. HPCA 2005, pages 258-262, 2005.
- Project 1: 112-bit prime field ECDLP
- Project 2: On the Use of the Negation Map in the Pollard Rho Method

64-bit Power Architecture with VMX

Cell Availability

	PS3 slim	PS3 discontinued	PCle	BladeServer QS22 *
Speed	3.2 GHz	3.2 GHz	2.8 GHz	3.2 GHz
\#SPEs	6	6	8	16
Memory	$\approx 256 \mathrm{MB}$	$\approx 256 \mathrm{MB}$	4 GB	$\leq 32 \mathrm{~GB}$
Price	$\$ 299.99$	$\$ 100-\$ 300$	$\approx \$ 8 \mathrm{k}$	$\$ 10 \mathrm{k}-\$ 14 \mathrm{k}$
Power	250 W	280 W	210 W	230 W
Compatibility	PSOne	PSOne, Linux	Linux	Linux

* IBM PowerXCell 8i processor, offering five times the double precision performance of the previous Cell/B.E. processor.

Cell architecture, the SPEs

The SPEs contain

- a Synergistic Processing Unit (SPU)
- Access to 128 registers of 128 -bit
- SIMD operations
- Dual pipeline (odd and even)
- In-order processor
- 256 KB of fast local memory (Local Store)
- Memory Flow Controller (MFC)
- Direct Memory Access (DMA) controller
- Handles synchronization operations to the other SPUs and the PPU
- DMA transfers are independent of the SPU program execution

SPU registers

- Byte (8-bit):

16-way SIMD

- Half-word (16-bit): 8-way SIMD
- Word (32-bit): 4-way SIMD

Special SPU instructions

All distinct binary operations $f:\{0,1\}^{2} \rightarrow\{0,1\}$ are present. Furthermore:

shuffle bytes
or across
average of two vectors select bits
carry/borrow generate multiply and add
add/sub extended
count leading zeros
count ones in bytes
gather Isb
sum bytes
multiply and subtract

only but,
$16 \times 16 \rightarrow 32$-bit multiplication
$16 \times 16+32 \rightarrow 32$-bit multiply-and-add instruction

Special SPU instructions

All distinct binary operations $f:\{0,1\}^{2} \rightarrow\{0,1\}$ are present. Furthermore:

shuffle bytes
or across
average of two vectors select bits
carry/borrow generate multiply and add
add/sub extended
count leading zeros
count ones in bytes
gather Isb
sum bytes
multiply and subtract

only 4-way SIMD $16 \times 16 \rightarrow 32$-bit multiplication but, 4-way SIMD $16 \times 16+32 \rightarrow 32$-bit multiply-and-add instruction

Considerations

- Branching
- No "smart" dynamic branch prediction
- Instead "prepare-to-branch" instructions to redirect instruction prefetch to branch targets
- Memory
- The executable and all data should fit in the LS
- Or perform manual DMA requests to the main memory (max. 214 MB)
- Instruction set limitations
- $16 \times 16 \rightarrow 32$ bit multipliers (4-SIMD)
- Challenge
- One odd and one even instruction can be dispatched per clock cycle.

LACAL setup

- Physically in the cluster room: 190 PS3s
- 6×4 PS3s in the PlayLaB (attached to the cluster)
- 5 PS3 in our offices for programming purposes
- $\Rightarrow 219$ PS3s in total.

Outline

- The Cell Broadband Engine Architecture
- Project 1: 112-bit prime field ECDLP
- Joppe W. Bos, Marcelo E. Kaihara, Thorsten Kleinjung, Arjen K. Lenstra, Peter L. Montgomery: Solving a 112-bit Prime Elliptic Curve Discrete Logarithm Problem on Game Consoles using Sloppy Reduction In The International Journal of Applied Cryptography, 2011 (to appear)
- Project 2: On the Use of the Negation Map in the Pollard Rho Method

The Elliptic Curve Discrete Logarithm Problem (ECDLP)

The setting:

- E is an elliptic curve over \mathbf{F}_{p} with p odd prime.
- $P \in E\left(\mathbf{F}_{p}\right)$ a point of (prime) order n.
- $Q=k \cdot P \in\langle P\rangle$.

Problem: Given E, p, n, P and Q what is k ?

ECDLP Parameters

Certicom Challenge

- Solve the ECDLP for EC over \mathbf{F}_{p} (p odd prime) and $\mathbf{F}_{2^{m}}$.
- 109-bit prime challenge solved in November 2002 by Chris Monico Required time: 4000-5000 PCs working 24/7 for one year.
- Next challenge is an EC over an 131-bit prime field

The 131-bit challenge requires 2000 times the effort of the 109 -bit

ECDLP Parameters

ECC Standards

- Standard for Efficient Cryptography (SEC), SEC2: Recommended Elliptic Curve Domain Parameters
Prime fields bit length: $\{112,128,160,192,224,256,384,521\}$
- Wireless Transport Layer Security Specification

Prime fields bit length: \{ 112, 160, 224 \}

- Digital Signature Standard (FIPS PUB 186-3) Prime fields bit length: $\{192,224,256,384,521\}$

ECDLP Parameters

ECC Standards

- Standard for Efficient Cryptography (SEC), SEC2: Recommended Elliptic Curve Domain Parameters
Prime fields bit length: $\{112,128,160,192,224,256,384,521\}$
- Wireless Transport Layer Security Specification Prime fields bit length: \{ 112, 160, 224 \}
- Digital Signature Standard (FIPS PUB 186-3) Prime fields bit length: $\{192,224,256,384,521\}$

How fast can we solve this 112-bit ECDLP?

How fast can we solve an 112-bit ECDLP?

Pollard rho

The most efficient algorithm in the literature (for generic curves) is Pollard rho. The underlying idea of this method is to search for two distinct pairs $\left(c_{i}, d_{i}\right),\left(c_{j}, d_{j}\right) \in \mathbf{Z} / n \mathbf{Z} \times \mathbf{Z} / n \mathbf{Z}$ such that

$$
\begin{gathered}
c_{i} \cdot P+d_{i} \cdot Q=c_{j} \cdot P+d_{j} \cdot Q \\
\left(c_{i}-c_{j}\right) \cdot P=\left(d_{j}-d_{i}\right) \cdot Q=\left(d_{j}-d_{i}\right) k \cdot P \\
k \equiv\left(c_{i}-c_{j}\right)\left(d_{j}-d_{i}\right)^{-1} \bmod n
\end{gathered}
$$

J. M. Pollard. Monte Carlo methods for index computation (mod p).Mathematics of Computation, 32:918-924, 1978.

Pollard Rho

- "Walk" through the set $\langle P\rangle$
- $X_{i}=c_{i} \cdot P+d_{i} \cdot Q$
- Iteration function $f:\langle P\rangle \rightarrow\langle P\rangle$
- This sequence eventually collides
- Expected number of steps
(iterations): $\sqrt{\frac{\pi \cdot|\langle P\rangle|}{2}}$

Integer Representation

Implementation Details

- Optimize for high-throughput, not low-latency
- Interleave two 4-way SIMD streams
- An efficient 4-way SIMD modular inversion algorithm
- Compute on 400 curves in parallel
- simultaneous inversion (Montgomery)
- Do not use the negation map optimization

Implementation Details

- Optimize for high-throughput, not low-latency
- Interleave two 4-way SIMD streams
- An efficient 4-way SIMD modular inversion algorithm
- Compute on 400 curves in parallel
- simultaneous inversion (Montgomery)
- Do not use the negation map optimization

Trade correctness for speed

- When adding points X and Y do not check if $X=Y$. Save code size and increase performance (no branching).
- Faster modular reduction which might compute the wrong result.

Special Moduli

112-bit target

The 112 -bit prime p used in the target curve $E\left(\mathbf{F}_{p}\right)$ is

$$
p=\frac{2^{128}-3}{11.6949}
$$

Let $R=2^{128}$, use a redundant representation modulo $\widetilde{p}=R-3=11 \cdot 6949 \cdot p$

Note:

$$
x \cdot 2^{128} \equiv x \cdot 3 \bmod \widetilde{p}
$$

$$
\begin{aligned}
\mathfrak{R}: \mathbf{Z} / 2^{256} \mathbf{Z} & \rightarrow \mathbf{Z} / 2^{256} \mathbf{Z} \\
x & \mapsto\left(x \bmod 2^{128}\right)+3 \cdot\left\lfloor\frac{x}{2^{128}}\right\rfloor \\
x=x_{H} \cdot 2^{128}+x_{L} & \equiv x_{L}+3 \cdot x_{H}=\mathfrak{R}(x) \bmod \widetilde{p}
\end{aligned}
$$

Sloppy Reduction

How often does it happen that $\mathfrak{R}(\mathfrak{R}(a \cdot b))>=R$?

$$
\begin{aligned}
& \text { Given } x=x_{0}+x_{1} R, 0 \leq x<R^{2} \text {, then } \\
& \mathfrak{R}(x)=x_{0}+3 x_{1}=y=y_{0}+y_{1} R \leq 4 R-4 \text { and hence: } y_{1} \leq 3
\end{aligned}
$$

Sloppy Reduction

How often does it happen that $\mathfrak{R}(\mathfrak{R}(a \cdot b))>=R$?

$$
\begin{aligned}
& \text { Given } x=x_{0}+x_{1} R, 0 \leq x<R^{2} \text {, then } \\
& \mathfrak{R}(x)=x_{0}+3 x_{1}=y=y_{0}+y_{1} R \leq 4 R-4 \text { and hence: } y_{1} \leq 3
\end{aligned}
$$

If $y_{1}=3$, then $y_{0}+y_{1} R=y_{0}+3 R \leq 4 R-4$ and thus $y_{0} \leq R-4$.
If $y_{1} \leq 2$, then $y_{0} \leq R-1$.
$\mathfrak{R}(\Re(x))=\left\{\begin{array}{l}y_{0}+3 y_{1} \leq(R-4)+3 \cdot 3 \\ y_{0}+2 y_{1} \leq(R-1)+3 \cdot 2\end{array}\right\}=R+5$.
Rough heuristic approximation: $\frac{6}{R+6}$

Sloppy Reduction

How often does it happen that $\mathfrak{R}(\mathfrak{R}(a \cdot b))>=R$?

Given $x=x_{0}+x_{1} R, 0 \leq x<R^{2}$, then $\mathfrak{R}(x)=x_{0}+3 x_{1}=y=y_{0}+y_{1} R \leq 4 R-4$ and hence: $y_{1} \leq 3$

If $y_{1}=3$, then $y_{0}+y_{1} R=y_{0}+3 R \leq 4 R-4$ and thus $y_{0} \leq R-4$.
If $y_{1} \leq 2$, then $y_{0} \leq R-1$.
$\mathfrak{R}(\Re(x))=\left\{\begin{array}{l}y_{0}+3 y_{1} \leq(R-4)+3 \cdot 3 \\ y_{0}+2 y_{1} \leq(R-1)+3 \cdot 2\end{array}\right\}=R+5$.
Rough heuristic approximation: $\frac{6}{R+6}$
More sophisticated heuristic:

$$
\left(\frac{\varphi(\tilde{p})}{\tilde{p}}\right) \cdot \sum_{k=1,2}\left(3-k-k \log \left(\frac{3}{k}\right)\right) \approx \frac{0.99118}{R}<\frac{1}{R}
$$

Performance Results

Operation $\left(\right.$ sloppy modulus $\tilde{p}=2^{128}-3$, modulus $\left.p=\frac{\tilde{p}}{11 \cdot 6949}\right)$	Average \# cycles per two interleaved 4-SIMD operations	Average \# cycles per operation	Operations per iteration	Average \# cycles per iteration
Sloppy multiplication modulo \tilde{p} (multiplication+reduction)	430 $(318+112)$	54 $(40+14)$	6	322
Modular subtraction	40 even, 24 odd: 40 total	5	6	
Modular inversion	n / a	4941	$\frac{1}{400}$	1
Unique representation mod p	192	24	12	24
Miscellaneous	544	68	1	68
Total		456		

Performance Results

Operation $\left(\right.$ sloppy modulus $\tilde{p}=2^{128}-3$, modulus $\left.p=\frac{\tilde{p}}{11 \cdot 6949}\right)$	Average \# cycles per two interleaved 4-SIMD operations	Average \# cycles per operation	Operations per iteration	Average \# cycles per iteration
Sloppy multiplication modulo \tilde{p} (multiplication+reduction)	430 $(318+112)$	54 $(40+14)$	6	322
Modular subtraction	40 even, 24 odd: 40 total	5	6	
Modular inversion	n / a	4941	$\frac{1}{400}$	1
Unique representation mod p	192	24	1	12
Miscellaneous	544	68	1	68
Total			456	

Hence, our 214-PS3 cluster:

- computes $9.1 \cdot 10^{9} \approx 2^{33}$ iterations per second
- works on $>0.5 \mathrm{M}$ curves in parallel

Storage

- Per PS3: one distinguished point (4×16 bytes) per two second
- When storing the data naively: $\approx 300 \mathrm{~GB}$ expected

Comparison

XC3S1000 FPGAs [1]

- FPGA-results of EC over 96- and 128-bit generic prime fields for COPACOBANA [2]
- Can host up to 120 FPGAs (US\$ 10, 000)

Our implementation

- Targeted at 112-bit prime curve
- Use 128 -bit multiplication + fast reduction modulo \widetilde{p}
- For US\$ 10, 000 buy 33 PS3s
[1] T. Güneysu, C. Paar, and J. Pelzl. Special-purpose hardware for solving the elliptic curve discrete logarithm problem. ACM Transactions on Reconfigurable Technology and Systems, 1(2):1-21, 2008.
[2] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Breaking ciphers with COPACOBANA a cost-optimized parallel code breaker. In CHES 2006, volume 4249 of LNCS, pages 101-118, 2006.

Comparison

	96 bits	128 bits
COPACOBANA	$4.0 \cdot 10^{7}$	$2.1 \cdot 10^{7}$
+ Moore's law	$7.9 \cdot 10^{7}$	$4.2 \cdot 10^{7}$
+ Negation map	$1.1 \cdot 10^{8}$	$5.9 \cdot 10^{7}$
PS3	$4.2 \cdot 10^{7}$	
33 PS3	$1.4 \cdot 10^{9}$	

33 PS3 / COPACOBANA (96 bits): 12.4 times faster 33 PS3 / COPACOBANA (128 bits): 23.8 times faster

Comparison

	96 bits	128 bits
COPACOBANA	$4.0 \cdot 10^{7}$	$2.1 \cdot 10^{7}$
+ Moore's law	$7.9 \cdot 10^{7}$	$4.2 \cdot 10^{7}$
+ Negation map	$1.1 \cdot 10^{8}$	$5.9 \cdot 10^{7}$
PS3	$4.2 \cdot 10^{7}$	
33 PS3	$1.4 \cdot 10^{9}$	

33 PS3 / COPACOBANA (96 bits): 12.4 times faster 33 PS3 / COPACOBANA (128 bits): 23.8 times faster

Note

The 33 dual-threaded PPE were not used
The new COPACOBANA has faster FPGAs (no performance results known yet).

The 112-bit Solution

The point P of prime order n is given in the standard. The x-coordinate of Q was chosen as $\left\lfloor(\pi-3) 10^{34}\right\rfloor$.

The 112-bit Solution

The point P of prime order n is given in the standard.
The x-coordinate of Q was chosen as $\left\lfloor(\pi-3) 10^{34}\right\rfloor$.

- Expected \#iterations $\sqrt{\frac{\pi \cdot n}{2}} \approx 8.4 \cdot 10^{16}$
- January 13, 2009 - July 8, 2009 (not running continuously)
- When run continuously using the latest version of our code, the same calculation would have taken 3.5 months

$$
\begin{array}{lrr}
P= & (188281465057972534892223778713752, & 3419875491033170827167861896082688) \\
Q= & (1415926535897932384626433832795028, & 3846759606494706724286139623885544) \\
n= & 4451685225093714776491891542548933 &
\end{array}
$$

The 112-bit Solution

The point P of prime order n is given in the standard.
The x-coordinate of Q was chosen as $\left\lfloor(\pi-3) 10^{34}\right\rfloor$.

- Expected \#iterations $\sqrt{\frac{\pi \cdot n}{2}} \approx 8.4 \cdot 10^{16}$
- January 13, 2009 - July 8, 2009 (not running continuously)
- When run continuously using the latest version of our code, the same calculation would have taken 3.5 months

$$
\left.\begin{array}{lr}
P= & (188281465057972534892223778713752, \\
Q= & (14459265355979392384626438332975028, \\
n= & 4451685225093714776491891542548933
\end{array}\right)
$$

Outline

- The Cell Broadband Engine Architecture
- Project 1: 112-bit prime field ECDLP
- Project 2: On the Use of the Negation Map in the Pollard Rho Method
- Joppe W. Bos, Thorsten Kleinjung, Arjen K. Lenstra: On the Use of the Negation Map in the Pollard Rho Method In Algorithmic Number Theory (ANTS) 2010, volume 6197 of LNCS, pages 67-83, 2010

Motivation

Study the negation map in practice when solving the elliptic curve discrete logarithm problem over prime fields.

- The Suite B Cryptography by the NSA allows elliptic curves over prime fields only.
- Solve ECDLPs fast \rightarrow break ECC-based schemes.

Using the (parallelized) Pollard ρ method

- 79-, 89-, 97- and 109-bit (2000) prime field Certicom challenges
- the 112-bit prime field ECDLP
have been solved.

Textbook optimization: negation map ($\sqrt{2}$ speed-up)

Motivation

Study the negation map in practice when solving the elliptic curve discrete logarithm problem over prime fields.

- The Suite B Cryptography by the NSA allows elliptic curves over prime fields only.
- Solve ECDLPs fast \rightarrow break ECC-based schemes.

Using the (parallelized) Pollard ρ method

- 79-, 89-, 97- and 109-bit (2000) prime field Certicom challenges
- the 112-bit prime field ECDLP
have been solved.

Textbook optimization: negation map ($\sqrt{2}$ speed-up) not used in any of the prime ECDLP records

Pollard $\rho,[$ Pollard-78]

Approximate random walk in $\langle P\rangle$.
Index function $\ell:\langle P\rangle=G_{0} \cup \ldots \cup G_{t-1} \mapsto[0, t-1]$

$$
G_{i}=\{x: x \in\langle P\rangle, \ell(x)=i\}, \quad\left|G_{i}\right| \approx \frac{n}{t}
$$

Precomputed partition constants: $\mathfrak{f}_{0}, \ldots, \mathfrak{f}_{t-1}$

r-adding walk	$r+s$-mixed walk
$t=r$	$t=r+s$
$\mathfrak{p}_{i+1}=\mathfrak{p}_{i}+\mathfrak{f}_{\ell\left(\mathfrak{p}_{i}\right)}$	$\mathfrak{p}_{i+1}=\left\{\begin{aligned} \mathfrak{p}_{i}+\mathfrak{f}_{\ell\left(\mathfrak{p}_{i}\right)}, & \text { if } 0 \leq \ell\left(\mathfrak{p}_{i}\right)<r \\ 2 \mathfrak{p}_{i}, & \text { if } \ell\left(\mathfrak{p}_{i}\right) \geq r\end{aligned}\right.$

[Teske-01]: $r=20$ performance close to a random walk.

The Negation Map

[Wiener,Zuccherato-98]

Equivalence relation \sim on $\langle P\rangle$ by $\mathfrak{p} \sim-\mathfrak{p}$ for $\mathfrak{p} \in\langle P\rangle$.

$$
\langle P\rangle \text { of size } n \quad \text { versus } \quad\langle P\rangle / \sim \text { of size about } \frac{n}{2} \text {. }
$$

Advantage: Reduces the number of steps by a factor of $\sqrt{2}$. Efficient to compute: Given $(x, y) \in\langle P\rangle \rightarrow-(x, y)=(x,-y)$

The Negation Map

[Wiener,Zuccherato-98]

Equivalence relation \sim on $\langle P\rangle$ by $\mathfrak{p} \sim-\mathfrak{p}$ for $\mathfrak{p} \in\langle P\rangle$.

$$
\langle P\rangle \text { of size } n \quad \text { versus } \quad\langle P\rangle / \sim \text { of size about } \frac{n}{2}
$$

Advantage: Reduces the number of steps by a factor of $\sqrt{2}$. Efficient to compute: Given $(x, y) \in\langle P\rangle \rightarrow-(x, y)=(x,-y)$
$\begin{array}{cc} & \mathfrak{p}_{i}+\mathfrak{f}_{\ell\left(\mathfrak{p}_{i}\right)} \\ & -\left(\mathfrak{p}_{i}+\mathfrak{f}_{\ell\left(\mathfrak{p}_{i}\right)}\right)\end{array}$

The Negation Map

[Wiener,Zuccherato-98]

Equivalence relation \sim on $\langle P\rangle$ by $\mathfrak{p} \sim-\mathfrak{p}$ for $\mathfrak{p} \in\langle P\rangle$.

$$
\langle P\rangle \text { of size } n \quad \text { versus } \quad\langle P\rangle / \sim \text { of size about } \frac{n}{2} \text {. }
$$

Advantage: Reduces the number of steps by a factor of $\sqrt{2}$. Efficient to compute: Given $(x, y) \in\langle P\rangle \rightarrow-(x, y)=(x,-y)$
$\begin{array}{cc} & \mathfrak{p}_{i}+\mathfrak{f}_{\ell\left(\mathfrak{p}_{i}\right)} \\ & -\left(\mathfrak{p}_{i}+\mathfrak{f}_{\ell\left(\mathfrak{p}_{i}\right)}\right)=\mathfrak{p}_{i+1}\end{array}$

Negation Map, Side-Effects

Well-known disadvantage: as presented no solution to large ECDLPs

Negation Map, Side-Effects

Well-known disadvantage: fruitless cycles

$$
\mathfrak{p} \xrightarrow{(i,-)}-\left(\mathfrak{p}+\mathfrak{f}_{i}\right) \xrightarrow{(i,-)} \mathfrak{p} .
$$

Fruitless 2-cycle starts from a random point with probability $\frac{1}{2 r}$ [Duursma,Gaudry,Morain-99] (Proposition 31)

Negation Map, Side-Effects

Well-known disadvantage: fruitless cycles

$$
\mathfrak{p} \xrightarrow{(i,-)}-\left(\mathfrak{p}+\mathfrak{f}_{i}\right) \xrightarrow{(i,-)} \mathfrak{p} .
$$

Fruitless 2-cycle starts from a random point with probability $\frac{1}{2 r}$
[Duursma, Gaudry, Morain-99] (Proposition 31)
2-cycle reduction technique: [Wiener,Zuccherato-98]
$f(\mathfrak{p})= \begin{cases}E(\mathfrak{p}) & \text { if } j=\ell\left(\sim\left(\mathfrak{p}+\mathfrak{f}_{j}\right)\right) \text { for } 0 \leq j<r \\ \sim\left(\mathfrak{p}+\mathfrak{f}_{i}\right) & \text { with } i \geq \ell(\mathfrak{p}) \text { minimal s.t. } \ell\left(\sim\left(\mathfrak{p}+\mathfrak{f}_{i}\right)\right) \neq i \bmod r .\end{cases}$
once every r^{r} steps: $E:\langle P\rangle \rightarrow\langle P\rangle$ may restart the walk
Cost increase $c=\sum_{i=0}^{r} \frac{1}{r^{i}}$ with $1+\frac{1}{r} \leq c \leq 1+\frac{1}{r-1}$.

Dealing with Fruitless Cycles in General [Gallant,Lambert, Vanstone-00]

Cycle detection

Compare \mathfrak{p} to all β points. Detect cycles of length $\leq \beta$.

Cycle Escaping

Add

- $\mathfrak{f}_{\ell(\mathfrak{p})+c}$ for a fixed $c \in \mathbf{Z}$
- a precomputed value f^{\prime}
- $\mathfrak{f}_{\ell(\mathfrak{p})}^{\prime \prime}$ from a distinct list of r precomputed values $f_{0}^{\prime \prime}, f_{1}^{\prime \prime}, \ldots, f_{r-1}^{\prime \prime}$. to a representative element of this cycle.

2-cycles when using the 2 -cycle reduction technique

Lemma

The probability to enter a fruitless 2-cycle when looking ahead to reduce 2-cycles while using an r-adding walk is

$$
\frac{1}{2 r}\left(\sum_{i=1}^{r-1} \frac{1}{r^{i}}\right)^{2}=\frac{\left(r^{r-1}-1\right)^{2}}{2 r^{2 r-1}(r-1)^{2}}=\frac{1}{2 r^{3}}+O\left(\frac{1}{r^{4}}\right)
$$

4-cycle Reduction

$$
\mathfrak{p} \xrightarrow{(i,+)} \mathfrak{p}+\mathfrak{f}_{i} \xrightarrow{(,-)}-\mathfrak{p}-\mathfrak{f}_{i}-\mathfrak{f}_{j} \xrightarrow{(i,+)}-\mathfrak{p}-\mathfrak{f}_{j} \xrightarrow{(\underline{i}-)} \mathfrak{p} .
$$

Fruitless 4-cycle starts with probability $\frac{r-1}{4 r^{3}}$.

4-cycle Reduction

$$
\mathfrak{p} \xrightarrow{(i,+)} \mathfrak{p}+\mathfrak{f}_{i} \xrightarrow{(j,-)}-\mathfrak{p}-\mathfrak{f}_{i}-\mathfrak{f}_{j} \xrightarrow{(i,+)}-\mathfrak{p}-\mathfrak{f}_{j} \xrightarrow{(j,-)} \mathfrak{p} .
$$

Fruitless 4-cycle starts with probability $\frac{r-1}{4 r^{3}}$.
Extend the 2-cycle reduction method to reduce 4-cycles:
$g(\mathfrak{p})= \begin{cases}E(\mathfrak{p}) & \text { if } j \in\left\{\ell(\mathfrak{q}), \ell\left(\sim\left(\mathfrak{q}+\mathfrak{f}_{\ell(\mathfrak{q})}\right)\right)\right\} \text { or } \ell(\mathfrak{q})=\ell\left(\sim\left(\mathfrak{q}+\mathfrak{f}_{\ell(\mathfrak{q})}\right)\right) \\ & \text { where } \mathfrak{q}=\sim\left(\mathfrak{p}+\mathfrak{f}_{j}\right), \text { for } 0 \leq j<r, \\ \mathfrak{q}=\sim\left(\mathfrak{p}+\mathfrak{f}_{i}\right) & \text { with } i \geq \ell(\mathfrak{p}) \text { minimal s.t. } \\ & i \bmod r \neq \ell(\mathfrak{q}) \neq \ell\left(\sim\left(\mathfrak{q}+\mathfrak{f}_{\ell(\mathfrak{q})}\right)\right) \neq i \bmod r .\end{cases}$
Disadvantage: more expensive iteration function: $\geq \frac{r+4}{r}$
Advantage: positive effect of $\sqrt{\frac{r-1}{r}}$ since

$$
\text { image }(g) \subset\langle P\rangle \text { with } \mid \text { image } \left.(g)\left|\approx \frac{r-1}{r}\right|\langle P\rangle \right\rvert\,
$$

2-cycles with Cycle Reduction

With 2-cycle reduction	With 4-cycle reduction
(i,-)	
$\ell\left(\sim\left(\mathfrak{p}+\mathfrak{f}_{i-1}\right)\right) \quad \ell\left(\sim\left(\mathfrak{q}+\mathfrak{f}_{i-1}\right)\right)$	$\ell\left(\sim\left(\overline{\mathfrak{p}}+\mathfrak{f}_{j}\right)\right) \quad \ell\left(\sim\left(\overline{\mathfrak{q}}+\mathfrak{f}_{k}\right)\right)$
$=i-1$,j\} $\in\{i-1, k\}$
$\geq \frac{1}{2 r^{3}}$	$\geq \frac{2(r-2)^{2}}{(r-1) r^{4}}$

Example: 4-cycle with 4-cycle reduction

$$
\begin{aligned}
& \tilde{\mathfrak{p}}=\sim\left(\mathfrak{p}+\mathfrak{f}_{i}\right) \bigodot_{\hat{i}} \sim\left(-\mathfrak{p}-\mathfrak{f}_{j+1}+\mathfrak{f}_{j}\right)=\tilde{\mathfrak{q}} \\
& (i, . .) \vdots(j+1,-) \quad(j, . .)
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\mathfrak{p}}=\sim\left(\mathfrak{p}+\mathfrak{f}_{i+1}+\mathfrak{f}_{j}\right) \bigodot^{\dot{\gamma}} \sim\left(-\mathfrak{p}-\mathfrak{f}_{i+1}-\mathfrak{f}_{j+1}+\mathfrak{f}_{i}\right)=\overline{\mathfrak{q}}
\end{aligned}
$$

Size of the Random Walk

- Probability to enter cycle depends on the number of partitions r
- Why not simply increase r ?

Size of the Random Walk

- Probability to enter cycle depends on the number of partitions r
- Why not simply increase r ?

- Practical performance penalty (cache-misses)
- Fruitless cycles still occur

Recurring Cycles

Using

- r-adding walk with a medium sized r and
- \{ 2, 4 \}-reduction technique and
- cycle escaping techniques
it is expected that many walks will never find a DTP.

Recurring Cycles

Using

- r-adding walk with a medium sized r and
- \{ 2, 4 \}-reduction technique and
- cycle escaping techniques
it is expected that many walks will never find a DTP.

Probabilities Overview

Cycle reduction method: none 2-cycle 4-cycle
Probability to enter $\left\{\begin{array}{lcll}2 \text {-cycle } & \frac{1}{2 r} & \frac{1}{2 r^{3}} & \frac{2(r-2)^{2}}{(r-1) r^{4}} \\ 4 \text {-cycle } & \frac{r-1}{4 r^{3}} & \frac{r-1}{4 r^{3}} & \frac{4(r-2)^{4}(r-1)}{r^{11}}\end{array}\right.$
Probability to recur
to escape point using $\left\{\begin{array}{l}\mathfrak{f}_{\ell(\mathfrak{p})+c} \\ \mathfrak{f}^{\prime} \\ \mathfrak{f}_{\ell(\mathfrak{p})}^{\prime \prime}\end{array}\right.$
Slowdown factor of iteration function

$\frac{1}{2 r}$	$\frac{1}{2 r^{2}}$	$\frac{(r-2)^{2}}{r^{4}}$
$\frac{1}{8 r}$	$\frac{1}{8 r^{3}}$	$\frac{(r-2)^{2}}{2 r^{5}}$
$\frac{1}{8 r^{2}}$	$\frac{1}{8 r^{4}}$	$\frac{(r-2)^{2}}{2 r^{6}}$

$\mathrm{n} / \mathrm{a} \quad \frac{r+1}{r} \quad \frac{r+4}{r}$

Dealing with Recurring Cycles

Heuristic

A cycle with at least one doubling is most likely not fruitless.

Reduce the number of fruitless (recurring) cycles by using a mixed-walk

- Advantage: Avoid recurring cycles
- Disadvantage: EC-doublings (7M) are more expensive than EC-additions (6M)

Experiments @ AMD Phenom 9500

Long-term yield: run 2×10^{9} iterations, ignore the first 10^{9}.

Yield: speed-up

$\left.\begin{array}{l}\text { \#additional additions } \\ \text { \#duplications }\end{array}\right\}$ max. theoretical speedup

	$r=16$	$r=32$	$r=64$	$r=128$	$r=256$	$r=512$
Without negation map						
	7.29: 0.98	7.28: 0.99	7.27: 1.00	7.19: 0.99	6.97: 0.96	6.78: 0.94
With negation map						
just g	0.00: 0.00	0.00: 0.00	0.00: 0.00	0.00: 0.00	0.04: 0.01	3.59: 0.70
just e	3.34: 0.64	4.89: 0.95	5.85: 1.14	6.10: 1.19	6.28: 1.23	6.18: 1.21
	0.00: 0.00	0.00: 0.00	1.52: 0.30	5.93: 1.16	6.47: 1.27	6.36: 1.25
	9.4e8 0.0 e0 $\} 0.08$	6.6e8 0.000 0.0 6.808 0.48	$\left.\begin{array}{l}\text { 1.0e8 } \\ 0.000 \\ 6\end{array}\right\} 1.28$	3.6e7 0.000 0.00 6.571 .37	$\left.{ }^{2.9 e 7} \begin{array}{l}\text { a } \\ 0.00 \\ 6.0\end{array}\right\} 1.38$	2.5e7 0.000 6.31 .39
f, \bar{e}	3.71: 0.72	6.36: 1.24	6.50: 1.27	6.57: 1.29	6.47: 1.27	6.30: 1.25
		$\left.{ }_{\substack{6.8 e 7 \\ 2.8 e 5}}^{6.3}\right\} 1.32$	$\left.\begin{array}{l}4.2 e 7 \\ 6.5 e 4 \\ 4.89\end{array}\right\} 1.36$		${ }_{3}^{2.9 e 7} 3.8031 .38$	${ }_{\substack{2.7 e 7 \\ 9.7 e 2}}^{\text {6. }}$ (1.39
g, e	0.00: 0.00	0.01: 0.00	4.89: 0.96	6.22: 1.22	6.23: 1.22	6.05: 1.19
	$\left.\begin{array}{l}\text { 8. } 7 \times 88 \\ \text { o. } 00 \\ 0\end{array}\right\} 0.19$	$\left.\begin{array}{l}\text { 3.7e8 } \\ \text { 3.0e0 }\end{array}\right\} 0.91$	$\left.\begin{array}{l}\text { 6.6e7 } \\ \substack{\text { OeO }} \\ 6.02\end{array}\right\} 1.34$	$\left.\begin{array}{l}4.2 e 7 \\ 0.000\end{array}\right\} 1.37$	$\left.\begin{array}{l}3.3 e 7 \\ 0.0 e 0\end{array}\right\} 1.38$	$\left.{ }^{1.3 e 7} 0.000\right\} 1.41$
g,	0.76: 0.15	5.91: 1.17	6.02: 1.18	6.25: 1.23	6.13: 1.20	6.00: 1.18
	$\left.\begin{array}{l}\text { 3. } 3 \text { 1.88 } \\ 1.655\end{array}\right\} 0.97$		${ }_{\substack{8.1 e 7 \\ 8.1 e 3}}^{6.02} 1.32$	${ }_{\substack{5.4 e 7 \\ 1.0 e 3}}^{\text {a }}$, 1.35	${ }_{\substack{4.0 e 7 \\ 1.2 e 2}}^{6.1} 1.37$	

Conclusions

Using the negation map optimization technique for solving prime ECDLPs is useful in practice when

- \{ 2, 4 \}-cycle reduction techniques are used
- recurring cycles are avoided; e.g. escaping by doubling
- use medium sized r-adding walk $(r=128)$

Using all this we managed to get a speedup of at most:

$$
1.29<\sqrt{2}(\approx 1.41)
$$

More details and experiments in the article.

Future Work

Better cycle reduction or escaping techniques?
Can we do better than 1.29 speedup?
Special algorithms for SIMD-architectures.

Conclusions

Future Work

Better cycle reduction or escaping techniques?
Can we do better than 1.29 speedup?
Special algorithms for SIMD-architectures.
D. J. Bernstein, T. Lange, and P. Schwabe: On the correct use of the negation map in the Pollard rho method. PKC 2011

- Straight-line algorithm to compute the negation map (branch-free)
- 2048-adding walk on the cache-less SPE of the Cell
- no direct comparison between negation and non-negation map setting
- estimated ≈ 1.37 speed-up

